The first mechanically-propelled, two-wheeled vehicle may have been built by Kirkpatrick MacMillan, a Scottish blacksmith, in 1839, although the claim is often disputed.[20] He is also associated with the first recorded instance of a cycling traffic offense, when a Glasgow newspaper in 1842 reported an accident in which an anonymous "gentleman from Dumfries-shire... bestride a velocipede... of ingenious design" knocked over a little girl in Glasgow and was fined five shillings.[21]
Massachusetts General Laws define three classes of motorized two-wheeled vehicles: Motorcycle, Motorized bicycle, and Motorized scooter.[98] Although the definition of motorized scooter includes two-wheeled vehicles propelled by electric motors with or without human power, motorized scooter specifically excludes anything which falls under the definitions of motorized bicycle and motorcycle. Motorized bicycle is a pedal bicycle which has a helper motor, or a non-pedal bicycle which has a motor, with a cylinder capacity not exceeding fifty cubic centimeters, an automatic transmission, and which is capable of a maximum speed of no more than thirty miles per hour. Motorcycle includes any bicycle with a motor or driving wheel attached, with the exception of vehicles that fall under the specific definition of motorized bicycle. Thus, a pedal bicycle with an electric motor or a non-pedal bicycle with an electric motor, automatic transmission, and maximum speed of 30 miles an hour would fall under the definition of motorized bicycle. An electric bicycle that did not meet those restrictions would be either a motorized scooter or motorcycle, depending on specific characteristics.
Even with cheaper or heavier bikes, once you accept that you are really meant to pedal gently and let the motor do the work, non-speed freaks will get into it. E-bikes are great for commuting and for places that aren't pancake flat. They'll pull you away from the lights quickly, iron out hills and stop you getting sweaty, so you can bin the Lycra and ride in jeans, a suit, or a winter coat.
While we're still fairly new to the solar ebike game, Mark is among the (suprisingly numerous) Grin customers who've been thinking about and experimenting with solar bikes for many years. After he shared pictures of his latest project and mentioned his round the world touring ambitions, we thought we had to do a small feature on this guy. A quick last minute trip to Maker Faire was arranged to meet up, and here we present, Mark Havran:
All classes of electric-assisted bicycles may be operated on a fully controlled limited access highway. Class 1 and 2 electric bicycles can be used on sidewalks, but Class 3 bicycles "may not be used on a sidewalk unless there is no alternative to travel over a sidewalk as part of a bicycle or pedestrian path."[143] Generally a person may not operate an electric-assisted bicycle on a trail that is designated as non-motorized and that has a natural surface, unless otherwise authorized.
Legislative changes in 2012 significantly altered the classification and regulatory structure for e-bikes. The general effect was to establish electric-assisted bicycles as a subset of bicycles and regulate e-bikes in roughly the same manner as bicycles instead of other motorized devices with two (or three) wheels. Laws 2012, ch. 287, art. 3, §§ 15-17, 21, 23-26, 30, 32-33, and 41. The 2012 Legislature also modified and clarified regulation of e-bikes on bike paths and trails. Laws 2012, ch. 287, art. 4, §§ 1-4, 20.
Since fat tire electric bikes are suitable for a wider variety of situations than a standard cruiser or commuter e-bike, they have the potential to appeal to more people. For example, hunters and campers are ideal candidates for fat tire e-bikes, as they’ll benefit greatly from the heavy-duty tires and powerful motor when they’re navigating difficult wooded trails with lots of gear.
I did my commute a few times with the Rattan and while I would never give up my “bike store” e-bike for this, it was a worthy substitute. It never gave out on the big hills, nor did I have to brake because I felt the bike was falling apart. The frame is a little small for 6-foot me but it only comes in one size. I really miss the low rolling drag of having road tires however and this is something that both Rattan and Ancheer could improve upon. I don’t think many people are seriously off-roading with these bikes. Put some Schwalbe Big Bens on there!
Some prohibitions also apply, such as on: carrying cargo that prevents keeping at least one hand on the handlebars or prevents proper use of brakes, riding no more than two abreast on a roadway or shoulder, and attaching the bicycle to another vehicle. Minn. Stat. § 169.222, subds. 3-5. The vehicles may be operated on a sidewalk except in a business district or when prohibited by a local unit of government, and must yield to pedestrians on the sidewalk. Minn. Stat. § 169.223, subd. 3. By default, electric-assisted bicycles are allowed on road shoulders as well as on bicycle trails, bicycle paths, and bicycle lanes.
The battery is the pedelec’s power source. It supplies the motor with the electrical energy that is required to provide power assistance when cycling. So it is hardly surprising that there is frequent discussion and “talking shop” about the eBike’s battery in particular. What is the difference between batteries? How far can you go on a fully charged battery? What do you have to remember about storage? Thomas Raica, head of technical customer application, here provides information and advice.
Gearless (Direct-Drive) Hub Motors – Some conversion kits (and bikes) use gearless, direct-drive motors. On this type of motor, the axle that passes through the center of the motor is actually the axle of the motor itself, with the copper windings fixed to the axle. The magnets are mounted to the outer shell of the hub motor. When electricity is applied to the stator a magnetic field is induced that causes the magnets to move. This in turn makes the whole shell of the motor turn and propels the e-bike forward. Even though corrosion will eventually have an impact, this type of motor should last for years since there’s no gearing and no contact between moving parts. They’re also capable of higher top speeds. But since there’s no gears, they have less torque and it requires more power to get the motor up to speed. Most direct-drive hub motors are 350w-500w and reach speeds of 18-25 mph. But more powerful motors can reach speeds of 35+ mph.

Front-Mounted Hub Motor can be found on pre-built bikes or on custom conversions. Mounted to the front wheel, this is the easiest configuration to setup if you’re converting a standard bicycle since there’s no derailleur or chain to worry about. And since most e-bike conversions include batteries mounted to the rear rack, using a front hub motor helps equalize the weight of the bike and makes it easier to handle. But there’s a small risk the motor could cause the front forks to brake. That’s why it’s vital you only use a front hub motor on a steel fork. For pre-built bikes, this shouldn’t be an issue since the motors are usually lower-powered on steel forks.


Awesome little machine. My wife loves it. She gets so many people asking her where she got it and that they want one too. I have an 6 speed/ electric bike but she is not comfortable riding it or any bike for that matter but she’s totally comfortable and confident when she rides the swag. Great product. Exceptional quality and cool looking too. You can’t go wrong with this machine for your wife or daughter or whomever wants to ride but doesn’t want anything bulky or to heavy.

Mid-mounted system means that the electric motor is not built into the wheel but is usually mounted near (often under) the bottom bracket shell. Mid-drive systems tend to feel more like a normal bike, since they drive the pedals, just like your legs, and those who frequently climb long, steep hills tend to prefer mid-drive systems for their ability to handle long climbs. As they can leverage the bicycles lowest gears for climbs, mid drive systems can also leverage the high gears to reach higher speeds on flat areas than a hub system. The mid-drive motor drives the crank, instead of the wheel itself, which multiplies its power and allows it to better take advantage of the bike’s existing gears. If the rider changes the gears appropriately, the motor can turn closer to its ideal rotations per minute which makes a huge difference while climbing hills, so this is a perfect option for those who love mountain biking.
While we won't be there in person, a number of vehicles will be at the show featuring the new Grin products like the GMAC Hub Motors, RH212 direct drive motors, All Axle hubs, and the Baserunner and Phaserunner_L10 controllers.  If you're lucky enough to attend then check out Booth A.18 and Booth 3.12 for some velomobiles and cargo vehicles running this gear.  
In the theoretical electric bike we considered up above, we had the dynamo/motor driving the back wheel directly, simply by pressing on the tire. Most electric bikes work a different way. They have compact electric motors built into the hub of the back or front wheel (or mounted in the center of the bike and connected to the pedal sprocket). Take a look at the hub of an electric bike and probably you'll see it's much fatter and bulkier than on a normal bike. You can read more about how these motors work in our main article about hub motors.
×