Both the Stromer and the Stoeckli are very nice looking designs and easy to handle. Reliability for both does not seem to be up to Swiss standards, e.g. some of the 2012 Stöcklis seem to have bad contacts. However, as of 2013, most of these problems should be fixed. The Cube got criticized for its battery/saddle system, but this has probably been fixed in more recent edition and it has less "punch" then the other's since the motor is smaller (324W?). I don't know about the BH Neo Nitro. Given the relatively low price of the BH Nitro, it may be the best buy in this category if you plan to cover smaller distances (the battery is limited to 9Ah, and Spain's industry does need some help ;) Anyhow, all of these models come with a variety of motors and country-specific modifications. E.g. in France, the BH Nitro comes with a 350W motor and is electronically limited to 25km/h, whereas in Switzerland you either can get a 500W - 45 km/h version or a 250W? - 25km/h version.
I do not recommend hacking a bike into s-pedelec, i.e. make a 25km/h bike go at 45 or faster. If you have an accident you will be in trouble. Just get a legal version. In addition you will have good insurance. Of course, in countries like France or the UK that so far do not know S-Pedelecs, you will have to make a difficult moral choice.... At least, make sure that your rig is safe...

My one complaint is the bike’s weight. This sucker is heavy! The aluminum frame looks light, but the the hub motor (4 pounds) and battery (5 pounds) add up. The bike’s total weight is 39 pounds, which is about average for e-bikes but not something you’d want to lug around all day. “This is not a solution for everybody,” Miller admits. “If you live in a fifth floor walkup this is probably not going to work.”
Bicycles were introduced in the late 19th century in Europe, and by the early 21st century, more than 1 billion were in existence at a given time.[1][2][3] These numbers far exceed the number of cars, both in total and ranked by the number of individual models produced.[4][5][6] They are the principal means of transportation in many regions. They also provide a popular form of recreation, and have been adapted for use as children's toys, general fitness, military and police applications, courier services, bicycle racing and bicycle stunts.
In general, more expensive bikes are better. However, this is just a trend. E.g. the "Kassensturz" Consumer program from our state TV found in a 2012 study confined to an engineering school, that "Supermarket" bikes, e.g. the 1400 CHF (1200 Euro) "Leopard" bike from COOP did very well. Evaluation is "good" (almost the same as the three times more expensive 25km/h Stromer). They also pointed out a very bad model from a discounter. In other words, you can find good cheap models, but read the tests first.
Speed Pedelec ebikes – A new classification of bikes called ‘Speed Pedelecs’ have emerged which technically meet the bicycle definition for a 20 mph ebike. These ebikes are designed to max out at 28 mph. Pedelecs are pedal activated vs throttle activated. The weasel words within the definition says, “20mph on motor alone”. Thus, a person who adds their leg power to the motor assist and happens to cruise at 28mph is NOT doing it by motor alone, and therefore the bike is considered to be compliant with the Federal Law. If the rider stops pedaling, the speed pedelec cannot maintain speed. Speed Pedelecs are becoming more popular in Europe and America, which means more models are being offered.

I have been able to find ebikes of all speeds out in the wild and after years of riding and a reflective posture for the law, I see that lawmakers were thinking less about me and my practical wants as the user, and more about the mass motor vehicle driving public, their perceptions and expectations of ‘typical bicycle speeds’ on the roads and paths. So the laws were made to bicycle NORMS, not the potential performance limits for users.
The pedals on a motorised bicycle must be the primary source of power for the vehicle. If the motor is the primary source of power then the device cannot be classed as a motorised bicycle. For example, a device where the rider can twist a throttle and complete a journey using motor power only without using the pedals, would not be classed as a motorised bicycle.
To operate the bike, you have to pedal for a second or so before the thumb throttle becomes active. This is often a cost and energy-saving measure designed into electric bicycles and scooters. Being able to start the motor from rest requires extra sensors and higher battery power. Starting the motor while it is in motion removes the need to install extra sensors in the motor (and thus removes one more possible failure or maintenance issue) and also eeks more range out of the battery by putting the energy intensive initial startup responsibility solely on the rider.

There are many possible types of electric motorized bicycles with several technologies available, varying in cost and complexity; direct-drive and geared motor units are both used. An electric power-assist system may be added to almost any pedal cycle using chain drive, belt drive, hub motors or friction drive. The power levels of motors used are influenced by available legal categories and are often limited to under 750 watts.


In the 1890s, electric bicycles were documented within various U.S. patents. For example, on 31 December 1895 Ogden Bolton Jr. was granted Template:US Patent for a battery-powered bicycle with “6-pole brush-and-commutator direct current (DC) hub motor mounted in the rear wheel.” There were no gears and the motor could draw up to 100 amperes (A) from a 10-V battery.[3]

In addition, we have a new lineup of torque sensors from NCTE to replace the long out-of-stock THUN devices. This restores the option for a true transducer that measures the actual spindle torsion. They provide an accurate human watts readout, and unlike other sensors they can be used in mid-drive setups where the motor is driving the right side chain.
The Class 3 Aventon Pace 500 urban e-bike has five levels of pedal assist and tops out at 28 mph. But the Pace has something not found on a lot of modern e-bikes. In addition to pedal power, it also has a throttle—in the case of the Pace, a small thumb paddle on the left side of the handlebar next to the control unit that holds at a steady 20 mph, no pedaling required. The bike itself has an aluminum frame, a swept-back handlebar, ergo grips, a sturdy kickstand, hydraulic disc brakes, 8-speed Shimano Altus shifting and gearing, 27.5x2.2-inch Kenda e-bike-rated tires, a saddle the size of Texas, and good ol’ classic city/commuter-bike geometry. It doesn’t come equipped with fenders or a rear rack, but you can add them. Power comes in the form of a 500-watt rear-hub motor, a semi-integrated battery on the down tube (with a range of up to 50 miles), and a backlit display unit mounted on the stem.
×