E-bikes are zero-emissions vehicles, as they emit no combustion by-products. However, the environmental effects of electricity generation and power distribution and of manufacturing and disposing of (limited life) high storage density batteries must be taken into account. Even with these issues considered, e-bikes are claimed to have a significantly lower environmental impact than conventional automobiles, and are generally seen as environmentally desirable in an urban environment.[65]

First, think about what you need your bike for -- if it's just for a short city commute, in among traffic, then consider a smaller frame that's easy to manoeuvre through cars. The GoCycle G3 (right) is impressively nimble and its electric assistance will help propel you up to 15 mph (24 kph). Better yet, it has built-in lights, automatic gears and you can customise the amount of power the motor provides using a phone app. 

"Medical Exemptions" are also a standard right in the State of Texas for motorcycles & even bicyclists. Through Texas's motorcycle helmet law (bicycle helmet laws from city ordinances), it is only required for those 21 years old or younger to wear a helmet. However, a medical exemption, [59][60][61][62][63][64] written by a certified licensed medical physician or licensed chiropractor, which exempts one from wearing a helmet, can be used for bicyclists if helmets are required.
Range is a key consideration with electric bikes, and is affected by factors such as motor efficiency, battery capacity, efficiency of the driving electronics, aerodynamics, hills and weight of the bike and rider. The range of an electric bike is usually stated as somewhere between 7 km (uphill on electric power only) to 70 km (minimum assistance) and is highly dependent on whether or not the bike is tested on flat roads or hills.[14] Some manufacturers, such as the Canadian BionX or American E+ (manufactured by Electric Motion Systems), have the option of using regenerative braking, the motor acts as a generator to slow the bike down prior to the brake pads engaging.[15] This is useful for extending the range and the life of brake pads and wheel rims. There are also experiments using fuel cells. e.g. the PHB. Some experiments have also been undertaken with super capacitors to supplement or replace batteries for cars and some SUVS.

Built around a heavy-duty alloy frame, the GSD eschews many of the traits of other cargo bikes: long wheelbases, bigger wheels, and especially, an unwieldy ride. Yet it boasts an extensive capacity, nimble handling—even fully loaded, thanks to a short wheelbase and 20-inch wheels—and enduring range in a package not much bigger than most non-cargo e-bikes. The stout frame holds a 250-watt Bosch motor that gives up to 275 percent of your power back to the pedals and reaches 20 mph. The GSD has room for two battery packs, extending the batteries’ combined range to a claimed 150 miles and making the Tern one of the longest-lasting e-bikes on the market. A laundry list of accessories and a (claimed) 396-pound carrying capacity round out the GSD’s status as an epic day-tripper.
The time or distance an electric bike battery will run between chargings is impossible to judge with much accuracy. There are too many variables: terrain, speed, rider weight, bike load (shopping, kids, luggage), and more. However, we can make a few generalizations about an e-bike’s recharge time and overall working life. These generalizations should be used for comparison purposes only.
In addition, Kalk weighs under 155 pounds — less than half of traditional motorbikes. Cake customized parts of the drivetrain and implemented an interior permanent magnet (IPM) motor. On a single charge, the bike travels up to 50 miles and as a bonus feature, maintenance is minimal due to the fact there are few moving parts thanks to its lack of a combustion engine.
The 1968 Vienna Convention on Road Traffic of the United Nations considers a bicycle to be a vehicle, and a person controlling a bicycle (whether actually riding or not) is considered an operator. The traffic codes of many countries reflect these definitions and demand that a bicycle satisfy certain legal requirements before it can be used on public roads. In many jurisdictions, it is an offense to use a bicycle that is not in a roadworthy condition.[citation needed]
When it comes to electric bikes, consumers have lots of choices.  So finding an electric bike to meet your needs won’t be hard.  Today, we are going to take a deeper look at three of the most popular types of electric bikes on the American market and many of the benefits of owning and using an electric bike.  Each of these ebikes has something different to offer as you will find out below.   So if you are looking to purchase a new electric bike in the near future, you just might want to pay close attention to the information provided...
Under the Guide Section of EBR, Court has written a full article, dedicated to the new classification approach, which was initiated by the BPSA (Bicycle Product Suppliers Association), supported by PeopleForBikes, and then Calbikes. The initiative was meant to be pro-active with ebike legislation, to establish self-imposed, measurable, distinct classes of electric bikes before states start hearing about anecdotal problems and potentially overreact to the technology with wide sweeping limitations.

In Norway, e-bikes are classified as ordinary bicycles, according to the Vehicle Regulation (kjøretøyforskriften) § 4-1, 5g. Hence, e-bikes are not registered in the Vehicle Registry, and there is no demand for a license to drive them. Still, there are constraints on the bicycle construction. The maximum nominal motor power output can be no more than 250 watts and the maximum performance speed of the vehicle when the engine is running is 25 km per hour (15 mph).[40] A function that reduces motor power when vehicle speed exceeds 25 km per hour is mandatory. However, if the motor is not running, the e-bike, or any other bike, answer only to the constraints of the ordinary speed limits.
The European Committee for Standardization (CEN) also has a specific Technical Committee, TC333, that defines European standards for cycles. Their mandate states that EN cycle standards shall harmonize with ISO standards. Some CEN cycle standards were developed before ISO published their standards, leading to strong European influences in this area. European cycle standards tend to describe minimum safety requirements, while ISO standards have historically harmonized parts geometry.[55]
With a 150mm-travel RockShox Yari fork and 132mm of rear travel from the RockShox Monarch Plus R shock, the Remote CTRL is Kona’s first dual-suspension e-mountain bike. It’s powered by a 250-watt Bosch Performance Line XC mid-drive motor that uses the company’s progressive E-MTB mode that is adaptable to rider input, which means you don’t have to toggle through assistance modes while riding. It offers assistance up to 20 mph, and the 500Wh integrated battery is the largest Bosch currently offers. Beefy 27.5x2.8-inch Maxxis Recon tires offer plenty of traction and also help to absorb smaller hits.
State laws tend to intermix the source of power as either gasoline ICE or electric drive. This is unfortunate because that neutralizes the environmental advantage of an ebike over an ICE moped. It also misrepresents the contrast in power output levels between an ICE and electric motor system. 50cc gas mopeds/scooters have a 2.5-4 HP rating, while the 20+ mph electric bikes will be 1-2hp, and ride much closer to a normal bicycle compared to a gas powered, 2.5hp moped. E-mopeds will weigh 55-70lbs. Gas mopeds and scooters are typically over 120lbs. E-mopeds are still electric bikes that get valuable power assist from human pedal effort and are usually much quieter.
If you have dynamo-powered bicycle lights, you already own an electric-powered bicycle! Consider: as you pump your legs up and down on the pedals, you make the wheels rotate. A small dynamo (generator) mounted on the rear wheel produces a tiny current of electricity that keeps your back safety lamp lit in the dark. Now suppose you could run this process backward. What if you removed the lamp and replaced it with a large battery. The battery would kick out a steady electric current, driving the dynamo in reverse so that it spun around like an electric motor. As the dynamo/motor turned, it would rotate the tire and make the bike go along without any help from your pedaling. Hey presto: an electric bike! It may sound a bit far-fetched, but this is more or less exactly how electric bikes work.
In the 1870s many cycling clubs flourished. They were popular in a time when there were not cars on the market and the principal mode of transportation was horse-drawn vehicles, such the horse and buggy or the horsecar. Among the earliest clubs was The Bicycle Touring Club, which has operated since 1878. By the turn of the century, cycling clubs flourished on both sides of the Atlantic, and touring and racing became widely popular. The Raleigh Bicycle Company was founded in Nottingham, England in 1888. It became the biggest bicycle manufacturing company in the world, making over two million bikes per year.[31]

Electric bicycles use rechargeable batteries, electric motors and some form of control. This can be a simple as an on-off switch but is more usually an electronic pulse width modulation control. Electric bicycles developed in Switzerland in the late 1980s for the Tour de Sol solar vehicle race came with solar charging stations but these were later fixed on roofs and connected so as to feed into the electric mains.[13] The bicycles were then charged from the mains, as is common today. Battery systems in use include lead-acid, NiCd, NiMH and Li-ion batteries.

Tires vary enormously depending on their intended purpose. Road bicycles use tires 18 to 25 millimeters wide, most often completely smooth, or slick, and inflated to high pressure in order to roll fast on smooth surfaces. Off-road tires are usually between 38 and 64 mm (1.5 and 2.5 in) wide, and have treads for gripping in muddy conditions or metal studs for ice.
Electric bikes are becoming a convenient and fun way to commute around a city, but they can be pricey. The average e-bike can cost $3,000, with some models getting up to $5,000 or more. But these prices are dropping, as new models come onto the market — and if you don’t mind giving up some of the glossier, high-tech features like embedded digital displays, retractable cable locks, and and theft tracking and recovery, you can find a really good quality e-bike for under $1,500.
For people wanting to push the effects of Statorade to the max, the Australian made Hubsinks can clamp on to your motor shell and provide additional cooling fins to shed heat to ambient air. These fit our new MXUS Cassette motors, and the 9C, Crystalyte H, and many others. These are listed on our new store category for motor cooling mods. And like other small products, we try to  keep a stock of 10mL Statorade syringes on Amazon for easy shipping to US customers. They are sold out now but another shipment is inbound. 
Bicycles are popular targets for theft, due to their value and ease of resale.[113] The number of bicycles stolen annually is difficult to quantify as a large number of crimes are not reported.[114] Around 50% of the participants in the Montreal International Journal of Sustainable Transportation survey were subjected to a bicycle theft in their lifetime as active cyclists.[115] Most bicycles have serial numbers that can be recorded to verify identity in case of theft.[116]
By 1898 a rear-wheel drive electric bicycle, which used a driving belt along the outside edge of the wheel, was patented by Mathew J. Steffens. Also, the 1899 U.S. Patent 627,066 by John Schnepf depicted a rear-wheel friction “roller-wheel” style drive electric bicycle.[7] Schnepf's invention was later re-examined and expanded in 1969 by G.A. Wood Jr. with his U.S. Patent 3,431,994. Wood’s device used 4 fractional horsepower motors; connected through a series of gears.[8]

According to Utah Code 41-6a-102 (17) an electric assisted bicycle is equipped with an electric motor with a power output of not more than 750 watts and is not capable of further assistance at a speed of more than 20 MPH, or at 28 MPH while pedaling and using a speedometer. New laws specifically exclude electric pedal-assisted bicycles as "motorized vehicles" and bicycles are permitted on all state land (but not necessarily on Indian Reservations, nor restrictive municipalities, such as in Park City Code 10-1-4.5 2) if the motor is not more than 750 Watts, and the assistance shuts off at 20 mph (Utah Traffic Code 53-3-202-17-a 1). E-bikes sold in Utah are required to have a sticker that details the performance capacity. Children under 14 can operate an electric bicycle if accompanied by a parent/guardian, but children under 8 may not. (Utah code 41-6a-1115.5) No license, registration, or insurance is required by the State but some municipalities may require these measures (Salt Lake City and Provo require registration).
E-bikes use rechargeable batteries, electric motors and some form of control. Battery systems in use include sealed lead-acid (SLA), nickel-cadmium (NiCad), nickel-metal hydride (NiMH) or lithium-ion polymer (Li-ion). Batteries vary according to the voltage, total charge capacity (amp hours), weight, the number of charging cycles before performance degrades, and ability to handle over-voltage charging conditions. The energy costs of operating e-bikes are small, but there can be considerable battery replacement costs. The lifespan of a battery pack varies depending on the type of usage. Shallow discharge/recharge cycles will help extend the overall battery life.
"Electric-assisted bicycle" means a bicycle with two or three wheels, a saddle, fully operative pedals for human propulsion, and an electric motor. The electric-assisted bicycle's electric motor must have a power output of no more than one thousand watts, be incapable of propelling the device at a speed of more than twenty miles per hour on level ground, and be incapable of further increasing the speed of the device when human power alone is used to propel the device beyond twenty miles per hour.[66]
But electric bicycles—e-bikes—are new territory for me. Broadly speaking, there are two basic options in e-bike land: power-on-demand and pedal-assist. With the former, the rider can control the speed with a throttle instead of just pedaling. Think moped but with an electric motor instead of internal combustion. Pedal-assist, by contrast, requires the rider to do some of the work. The electric motor won't engage unless the rider is pedaling.
And let’s not forget the economic advantages of owning an e-bike. The annual cost of running a new family car is, on average, about $9,000 per year. Running an electric bike costs around $400 per year. And while filling a gas tank costs around $30, recharging an electric bike battery costs only about 50 cents. A tank of gas may get you further, but not 60 times further!
Speaking of which, if you're used to non-electric cycles, be aware that e-bikes are heavy and capped at 25kph or 15.5mph. In many cases, that means the bike starts to feel like its actively fighting against you, if you try to push the speed higher than that by pedalling. That's especially true with heavier bikes, for obvious reasons, and can take a while to get used to. 
Besides voltage, batteries are rated by amp hours (AH). Although voltage seems to get the most attention, the amp hour rating of the battery is just as important. It is the measure of a battery’s capacity and provides a good indication of the range you can expect from an electric bike. Although lots of factors come into play in determining range (ie: rider weight, terrain, input, efficiency, etc.), a good rule of thumb is range is equal to AH. So under normal conditions, an average rider can expect 10 miles out of a 10AH battery (with no pedaling). With rider input, this number can be dramatically increased, so most 10AH batteries are rated “up to 20 miles” by the manufacturer which assumes pedaling. On pedal-assist bikes (which require pedaling), the range ratings are much higher because the rider is constantly assisting the motor and reducing the current draw.

The environmental effects involved in recharging the batteries can of course be reduced. The small size of the battery pack on an e-bike, relative to the larger pack used in an electric car, makes them very good candidates for charging via solar power or other renewable energy resources. Sanyo capitalized on this benefit when it set up "solar parking lots", in which e-bike riders can charge their vehicles while parked under photovoltaic panels.[66]

I converted my Kona Dew Deluxe to electric with a controller and 1000 watt front wheel. The SLA batteries I tried initially were _functional_, but the bike had a range of about 6 miles @ approx. 50% throttle use. Since upgrading to the Joyisi pack, the utility of the bike has increased exponentially. I need to add a better gauge so I can drain the battery more fully between charges, but I'm getting at least 20 miles per charge, including some very aggressive uphill segments. On flat ground, the battery powers the bike to approx. 35MPH; even on really steep hills with minimal pedal assist, I do at least 15MPH. Biking 15MPH uphill with little/no effort is EPIC.

Flyer Vollblut. A new rear motor bike from one of the most reliable E-bike makers. This model doesn't look as "heavy" as most other Flyer models. The Vollblut 500 has the 500W new Panasonic rear motor, front fork suspension, 28 inch wheels. It is in the same price range as the Stöckli and the Stromer. Flyer is known for top service and reliability, but it's a new model with a new motor ....
The last 8 months we've been wrapping up some long duration testing of Statorade across different hub motor lines and performing experiments confirming its long term stability. These results have us pumped to introduce this motor cooling solution beyond DIY'ers and into wider markets. As an example, have a look at the video we below showing the effect this has on a small direct drive folding bike motor.