A new electric cyclist will likely experience two conflicts of thought: 1). Will the general public accept my use of this power assist technology, or Will they ridicule and reject me as being lazy? 2). Will I stand out to law enforcement by the look of my bike or riding a bit faster than other cyclist on hills and roads? Grappling with these two thoughts will tempt most folks to try and remain unnoticed and ride more responsibly. After I became an advocate of e-transportation on two wheels, enjoying the benefits of power assist commuting, I eventually was a bit put off by this federal law, especially the 20mph limitation. Is 20 mph really practical and justified? Is it not true that many active young people on typical road bicycles are able to actively ride in the 20-25mph range? I discovered that ebikes, with larger tires and disk brakes, can comfortably and safety cruise in that range of speed. The standard 2001 Federal law of 20mph, eventually became a practical limitation for an ebike commuter of over 20 miles a day, and caused me to get a bike beyond the federal limits, making me more alert and sensitive when riding in the presence of the police.
Bicycles were introduced in the late 19th century in Europe, and by the early 21st century, more than 1 billion were in existence at a given time.[1][2][3] These numbers far exceed the number of cars, both in total and ranked by the number of individual models produced.[4][5][6] They are the principal means of transportation in many regions. They also provide a popular form of recreation, and have been adapted for use as children's toys, general fitness, military and police applications, courier services, bicycle racing and bicycle stunts.

There are two main categories when choosing an e-bike: a pre-built electric bike or a custom e-bike conversion. Prefab electric bikes come in a wide variety of setups and styles and are designed specifically as electric bicycles. With unique characteristics and design qualities, most meet the law requirements which limit power and speed. There is also a variety of options to choose from equipped with different design and different motor and battery configurations to suit different riding styles and preferences: cruisers, commuters, mountain bikes and more. Pre-built e-bikes are clean and sleek in design with all of the wiring and electrical components built directly into the bike. For most people, production e-bikes work great and there’s no need for a custom conversion.


Gearless (Direct-Drive) Hub Motors – Some conversion kits (and bikes) use gearless, direct-drive motors. On this type of motor, the axle that passes through the center of the motor is actually the axle of the motor itself, with the copper windings fixed to the axle. The magnets are mounted to the outer shell of the hub motor. When electricity is applied to the stator a magnetic field is induced that causes the magnets to move. This in turn makes the whole shell of the motor turn and propels the e-bike forward. Even though corrosion will eventually have an impact, this type of motor should last for years since there’s no gearing and no contact between moving parts. They’re also capable of higher top speeds. But since there’s no gears, they have less torque and it requires more power to get the motor up to speed. Most direct-drive hub motors are 350w-500w and reach speeds of 18-25 mph. But more powerful motors can reach speeds of 35+ mph.
As long as you can do without some of the perks that pricier models offer—like a detailed display unit, integrated lights, and a torque-sensor motor—the August Live! LS is a solid, stable, comfortable, and really freakin’ cute (have you see those polka-dot fenders?) e-bike. Its 8-speed twist shifter, chopper-style handlebar, Touch Down Geometry (for a more laid-back ride), and three levels of assist keep this bike within the realm of “cruiser.” But with a 250-watt Bafang rear-hub motor, a top pedal-assisted speed of 20 mph, and reliable disc brakes, the August is no joke. It’ll get you to the top of relatively steep climbs without forcing you out of the saddle, and it feels super stable on the way back down. It has a battery range of 20 miles, but that’s enough to take it where it’s happiest: tootling along at the beach, around town, and through the park.
In principle, you would use about 100W (your own energy) for moderate pedalling at 22km/h. If you select 300% assistance (high), that will add another 300W and you can pedal almost twice as fast, i.e. about 27km/h (you will encounter increasing resistance from wind). Therefore, if you got a 400Wh battery, you got a range of about 37km at 37km/h. If go more slowly and use less support (200%), then you can drive further, e.g. 60km with a 400Wh battery. (Read more in die Die Schnellen im Vergleich)

Conversion kits, on the other hand, are sold and installed separately on traditional bicycles. They are harder to setup and conceal, and require some basic mechanical ability and a little bit of ‘elbow grease’ to install. The advantage of conversion kits is that you can choose almost any standard bicycle, and you have the freedom to change or upgrade components as you go. A conversion kit will also allow you to achieve higher power and speed ratings that are not possible on most pre-built electric bike models. Kits are great for tall or heavy riders because they can opt for a larger bike, with higher power and weight carrying capacity. People living in hilly terrain may require the additional torque to handle extremely large inclines. For people who prefer a specific bike model or just love to go faster, a conversion kit offers enormous flexibility.
Being member of European Economic Area (EEA), Norway implemented the European Union directive 2002/24/EC. This directive defined legal ebikes for all EU and EEA countries to cycle "with pedal assistance which are equipped with an auxiliary electric motor having a maximum continuous rated power of 0.25 kW, of which the output is progressively reduced and finally cut off as the vehicle reaches a speed of 25 km/h or if the cyclist stops pedaling." The definition became part of Norwegian vehicle legislation in 2003.[41] A more detailed specification will become effective when the new European ebike product safety standard EN 15194 is published in 2009.
Being member of European Economic Area (EEA), Norway implemented the European Union directive 2002/24/EC. This directive defined legal ebikes for all EU and EEA countries to "Cycles with pedal assistance which are equipped with an auxiliary electric motor having a maximum continuous rated power of 0.25 kW, of which the output is progressively reduced and finally cut off as the vehicle reaches a speed of 25 km/h or if the cyclist stops pedaling.” The definition became part of Norwegian vehicle legislation[17] in 2003. A more detailed specification will become effective when the new European ebike product safety standard EN 15194 is published in 2009.

Visually, the Pedego City Commuter Classic Electric Bike is stunning – a smart blend of yesteryear's style and today's technology. Pleasantly high handlebars, a sprung seat, and lovely Schwalbe Fat Frank tires make it very comfortable. Stopping is taken care of by powerful disk brakes, front and rear. Lights are included, as is a useful cargo rack. From an e-bike standpoint, the Pedego Classic City Commuter sports a reliable, hub-mounted motor driven by a 36-volt, 10-amp battery. There's a digital display with a trip computer, odometer, speedometer, pedal assist level, and battery charge information.

Having spent some quality time with Wing’s e-bike, I understand why so many people are excited about the growing popularity of electric-powered vehicles like bikes and scooters. They take a lot of the work out of getting from point A to point B, while retaining all of the joy. They can give you more confidence when navigating a treacherous city terrain that prioritizes cars over people. And let’s face it: bikes are cool, and always will be.
Government regulation is written and administered with a broad, dull, painful axe. Regulations do not mix well with independent, maverick, DIY programs either. Vehicle regulations get started when there is either a visible tragedy, or a rising conflict with the status quo (like the SFO scooters program). The ebike community cannot afford a deadly accident especially if it involves others and the ebike or ebike rider are at fault. The Ebike community is up against a tough status quo that consists of pedestrians, motor vehicle traffic, the large well-funded and battle tested regular bicycle community, and the environment (especially for MTB riding and off-road use).
Some electric bikes claim to use a neat trick called regenerative braking. If you start pedaling the bicycle or going downhill, the spinning wheels turn the electric motor in the hub in reverse and start charging up the batteries. In practice, regenerative braking is nowhere near as useful on an electric bicycle as it is on an electric train or car. An electric bike has much less mass and velocity than either a train or car, so it never gains (or loses) anything like as much kinetic energy when it starts and stops. You'd have to go down an awful lot of hills to charge up the batteries completely and that's usually not practical. And what's the point in pedaling the wheels simply to charge the battery? You might as well have bought an ordinary bicycle to start with!
This Class 3 (28 mph), utilitarian, road e-bike is smooth and torquey thanks to its Bosch Performance Speed motor. With a drop bar and traditional road-bike position and handling, the CrossRip+ is more suited to longer rides on mixed terrain than navigating congested city streets. It comes with a rear rack—for mounting bags, not for attaching cargo directly—full fenders, a kickstand, and integrated front and rear lights (which are powered by a Bosch 500Wh battery). It features a SRAM Force 1x11 drivetrain, hydraulic disc brakes, and wide 700x38mm tires.
The great majority of modern bicycles have a frame with upright seating that looks much like the first chain-driven bike.[7][8][9] These upright bicycles almost always feature the diamond frame, a truss consisting of two triangles: the front triangle and the rear triangle. The front triangle consists of the head tube, top tube, down tube, and seat tube. The head tube contains the headset, the set of bearings that allows the fork to turn smoothly for steering and balance. The top tube connects the head tube to the seat tube at the top, and the down tube connects the head tube to the bottom bracket. The rear triangle consists of the seat tube and paired chain stays and seat stays. The chain stays run parallel to the chain, connecting the bottom bracket to the rear dropout, where the axle for the rear wheel is held. The seat stays connect the top of the seat tube (at or near the same point as the top tube) to the rear fork ends.
Can I legally buy/build and ride an ebike that’s faster than 20 mph? Yes you can, but you need to know that the ebike is no longer considered equivalent to a bicycle and is subject to other state vehicular classifications. The definitions for electric bikes spanning 20-30mph, and 1-2 horsepower ranges, will vary from state to state, resulting in a no-man’s-land consensus about limits for motor vehicle definition. The common label for a 20-30mph, 2-wheeled vehicle with active pedals is a Moped. Other MVA labels include motor scooter, motorbike and dirt bike which may have equivalent power and speed performance, but do not have pedals to assist and move the vehicle.
Some countries require child and/or adult cyclists to wear helmets, as this may protect riders from head trauma. Countries which require adult cyclists to wear helmets include Spain, New Zealand and Australia. Mandatory helmet wearing is one of the most controversial topics in the cycling world, with proponents arguing that it reduces head injuries and thus is an acceptable requirement, while opponents argue that by making cycling seem more dangerous and cumbersome, it reduces cyclist numbers on the streets, creating an overall negative health effect (fewer people cycling for their own health, and the remaining cyclists being more exposed through a reversed safety in numbers effect).[citation needed]
Some e-bikes operate in pedal-assist only, others have a throttle, and some have both. Generally, pedal-assist only bikes will provide multiple power settings to choose from to help customize your ride, while bikes with both throttle and pedal-assist will have limited pedal-assist options. With these bikes, the throttle provides full control (when needed) while pedal assist is just a secondary option, great on straightaways or open road.
"Bicycle" means either of the following: (1) A device having two wheels and having at least one saddle or seat for the use of a rider which is propelled by human power. (2) A device having two or three wheels with fully operable pedals and an electric motor of less than 750 watts (one horsepower), whose maximum speed on a paved level surface, when powered solely by such a motor while ridden, is less than 20 miles per hour.[citation needed],
The dwarf ordinary addressed some of these faults by reducing the front wheel diameter and setting the seat further back. This, in turn, required gearing—effected in a variety of ways—to efficiently use pedal power. Having to both pedal and steer via the front wheel remained a problem. Englishman J.K. Starley (nephew of James Starley), J.H. Lawson, and Shergold solved this problem by introducing the chain drive (originated by the unsuccessful "bicyclette" of Englishman Henry Lawson),[25] connecting the frame-mounted cranks to the rear wheel. These models were known as safety bicycles, dwarf safeties, or upright bicycles for their lower seat height and better weight distribution, although without pneumatic tires the ride of the smaller-wheeled bicycle would be much rougher than that of the larger-wheeled variety. Starley's 1885 Rover, manufactured in Coventry[26] is usually described as the first recognizably modern bicycle.[27] Soon the seat tube was added, creating the modern bike's double-triangle diamond frame.
Dryft is a robust, energetic mountain bike, painted in the hues of the setting sun and evening sky. This electric vehicle is designed to take you to those places where no other vehicle can. LightSpeed Dryft an e-Bike that is as fond of adventure as you are. The ideal companion to the thrill seeker in you — wherever you decide to ride, your Dryft always has your back.
IZIP ebikes is currently holding their huge annual sale. We know that IZIP makes high quality electric bikes that you can buy and ride with confidence. The current sale is a clearance of their 2018 models. One of the best ways to get a good deal on any bike is to buy a previous year’s model. Plus, IZIP offers free same-day shipping. So we have highlighted two of the best bargains in ebikes available from IZIP right now.
The Riese & Müller Load Touring HS is billed as “the ultimate minivan of e-bikes,” and it holds up to that claim. With a low center of gravity (aided by the 20-inch front and 26-inch rear wheels), the Load is easy to handle. Tektro hydraulic disc brakes add control, and front and rear suspension provide comfort. The Bosch motor offers an assist up to 275 percent of your effort until you hit 28 mph, when it cuts out. Two 500Wh batteries give you 12 hours or more of range at full power. It’s capable of toting up to 220 pounds of pets, people, and less-animate cargo. R&M also sells a double child seat for kids up to age 6 and a child-seat fastener for your youngest passengers.
Oregon Law (ORS 801.258) defines an electric assisted bicycle as an electric motor-driven vehicle equipped with operable pedals, a seat or saddle for the rider, no more than three wheels in contact during travel. In addition, the vehicle must be equipped with an electric motor that is capable of applying a power output of no greater than 1,000 watts, and that is incapable of propelling the vehicle at a speed no greater than 20 miles per hour on level ground.[54]

Maybe the most confusing legal issue facing e-bike riders today is the difference between a bike lane and bike path. A bike lane is a marked section of roadway shared with motor vehicles. Bike paths pretty much universally prohibit the use of motorized vehicles. Still, you will need to research your area. As an example: “A path near our office specifically says “no motorized bicycles.” Yet, when we tracked down an employee who claimed to work enforcement on the path, he said that our e-bike was allowed.”8

Artwork: Hub motors aren't the only way to power electric bicycle wheels. If you've ever watched a mouse scampering around inside an exercise wheel, you might have wondered if you could drive a wheel electrically, in a similar way, with something that pushes against the inside of the rim. A company called GeoOrbital has been developing an ingenious mechanical equivalent that can be used to power conventional bikes—and here's a simplified illustration of how it works. It has a motorized drive roller (red) that presses against the inner rim, powered by a battery pack (orange) that sits snugly inside the wheel. Two guide rollers (blue) mounted on a tensioned framework (green) take the place of the conventional arrangement of spokes. According to GeoOrbital, you can fit one of its wheels to a normal bike in just 60 seconds.


In Nova Scotia power-assisted bicycles are classified similarly to standard pedal bicycles. The Nova Scotia Motor Vehicle Act defines a power-assisted bicycle as a bicycle with an electric motor of 500 watts or less, with two wheels (one of which is at least 350 mm) or four wheels (two of which are at least 350mm). PABs are permitted on the road in the province of Nova Scotia as long as you wear an approved bicycle helmet with the chinstrap engaged. They do not have to meet the conditions defined within the Canadian Motor Vehicle Safety Regulations for a motorcycle(they are not classed as "motor vehicles"), but they do have to comply with federal regulations that define Power Assisted Bicycles.
The two most common types of hub motors used in electric bicycles are brushed and brushless. Many configurations are available, varying in cost and complexity; direct-drive and geared motor units are both used. An electric power-assist system may be added to almost any pedal cycle using chain drive, belt drive, hub motors or friction drive. BLDC hub motors are a common modern design. The motor is built into the wheel hub itself, and the stator fixed solidly to the axle, and the magnets attached to and rotating with the wheel. The bicycle wheel hub is the motor. The power levels of motors used are influenced by available legal categories and are often, but not always limited to under 750 watts.
Electric-assisted bicycles are treated as human-powered bicycles, while bicycles capable of propulsion by electric power alone face additional registration and regulatory requirements as mopeds. Requirements include electric power generation by a motor that cannot be easily modified, along with a power assist mechanism that operates safely and smoothly. In December 2008, The assist ratio was updated as follow:
×