Attitudes to electric bikes have changed in recent years. For a long time they were seen by cyclists as 'cheating' and by non-cyclists as being just like a bike, but uglier and far more expensive. This new breed of best-in-class electric bikes feel more natural, look more normal, and people are coming around to the idea that a ride with the convenience of a bike but without all the sweat and effort is a Very Good Thing. 
Government regulation is written and administered with a broad, dull, painful axe. Regulations do not mix well with independent, maverick, DIY programs either. Vehicle regulations get started when there is either a visible tragedy, or a rising conflict with the status quo (like the SFO scooters program). The ebike community cannot afford a deadly accident especially if it involves others and the ebike or ebike rider are at fault. The Ebike community is up against a tough status quo that consists of pedestrians, motor vehicle traffic, the large well-funded and battle tested regular bicycle community, and the environment (especially for MTB riding and off-road use).
As electric bike options continue to expand, more brands are integrating the battery more seamlessly. That makes them look sleeker (and more like a real bike). Batteries are expensive, so make sure there’s a good way to lock the battery to your bike if you’ll be keeping it outside. Overall weight is important. Some battery and motors can add 15 pounds or more to the bike. With assist, you won’t feel that much when you’re riding, but you will if you have to carry your bike up stairs or lift it onto a bike rack.
Firstly there's a magnetically-fired locking pin in the rear wheel, triggered by kicking a button on the hub. This is fairly secure in itself and almost impossible to remove without destroying the bike. In London, we'd pair it with a more traditional bike lock so there's a more obvious visual deterrent, though a LED matrix screen on the frame does issue a warning to would-be tea-leafs.
October 5, 2009 — Ontario is bringing in some new safety requirements for electric bikes. E-bikes, which can reach a speed of 32 kilometres per hour, are allowed to share the road with cars, pedestrians and other traffic throughout the province. The new rules limit the maximum weight of an e-bike to 120 kilograms, require a maximum braking distance of nine metres and prohibit any modifications to the bike's motor that would create speeds greater than 32 kilometres per hour. Also, riders must be at least 16 years of age, wear approved bicycle or motorcycle helmets and follow the same traffic laws as bicyclists. Municipalities will be able to decide where e-bikes may be used on their streets, bike lanes and trails. E-bikes will not be permitted on 400-series highways, expressways or other areas where bicycles are not allowed. Riding an e-bike under the age of 16 or riding an e-bike without an approved helmet carries fines ranging from $60 to $500. For all other traffic offences, e-bike riders will be subject to the same penalties as cyclists.
Ontario is one of the last provinces in Canada to move toward legalizing power-assisted bicycles (PABs) for use on roads, even though they have been federally defined and completely legal in Canada since early 2001. In November 2005 "Bill 169" received royal assent allowing the Ministry of Transportation of Ontario (MTO) to place any vehicle on road. On October 4 2006 the Minister of Transportation for Ontario Donna Cansfield announced the Pilot Project allowing PABs which meet the federal standards definition for operation on road. PAB riders must follow the rules and regulations of a regular bicycles, wear an approved bicycle helmet and be at least 16 years or older. There are still a number of legal considerations for operating any bicycle in Ontario. [9][10][11][12]

The Footloose has no chain, however -- it's entirely electrically driven. It takes very little effort to get to your destination, meaning you arrive at work without having broken a sweat. The downside is that when you run out of power, you're not going anywhere. And pedalling from a standstill, waiting for the motor to kick in, is an odd sensation that takes some getting used to.
When I began testing the Rad Power bike, I wasn’t sure if it would ride like a bakfiets or more like your standard bike. Hundreds of miles later, the RadWagon’s biggest strength is how well it handles. If you aren’t riding with kids, you almost never notice the weight of the cargo area behind you and pedaling is made easy and efficient thanks to a 750W direct drive hub motor and smooth acceleration.
But two other concerns are also front and center when it comes to biking: cost and convenience. Not many people have showers at their places of employment, and who wants to show up to work coated in sweat and stinky for the rest of the day? Electric bikes solve the convenience problem by making the process almost effortless; you can bike for miles—even up and down hills—without breaking a sweat.
"Electric-assisted bicycle" means a bicycle with two or three wheels, a saddle, fully operative pedals for human propulsion, and an electric motor. The electric-assisted bicycle's electric motor must have a power output of no more than one thousand watts, be incapable of propelling the device at a speed of more than twenty miles per hour on level ground, and be incapable of further increasing the speed of the device when human power alone is used to propel the device beyond twenty miles per hour.[66]

Bicycle manufacturing proved to be a training ground for other industries and led to the development of advanced metalworking techniques, both for the frames themselves and for special components such as ball bearings, washers, and sprockets. These techniques later enabled skilled metalworkers and mechanics to develop the components used in early automobiles and aircraft.


Controllers for brushed motors: Brushed motors are also used in e-bikes but are becoming less common due to their intrinsic lower efficiency. Controllers for brushed motors however are much simpler and cheaper due to the fact they don't require hall sensor feedback and are typically designed to be open-loop controllers. Some controllers can handle multiple voltages.

We use cookies to optimise the content and display of our pages, to offer social media functionality and to analyse access to our website without creating a profile. In addition, when using the social media share functionality, information on the use of our website is transmitted to the respective providers. Use of the cookies necessary for this purpose can be deactivated in the Privacy Policy. Learn more.
The Consumer Product Safety Commission(CPSC) stipulates that commercially manufactured low-speed electric bicycles, or tricycles, must have fully operable pedals, an electric motor not exceeding 750W of power and a top motor-powered speed not in excess of 20 miles per hour (32 km/h).[22] An electric bike remaining within these specifications will be regarded simply as a bicycle for purposes of safety standards. This supersedes any state law that is more stringent, but only regarding safety equipment required on electric bicycles and the standard of manufacture they must meet.[23]. The legislation enacting this amendment to the CPSC is also known as HR 727[24].
Bicycles were introduced in the late 19th century in Europe, and by the early 21st century, more than 1 billion were in existence at a given time.[1][2][3] These numbers far exceed the number of cars, both in total and ranked by the number of individual models produced.[4][5][6] They are the principal means of transportation in many regions. They also provide a popular form of recreation, and have been adapted for use as children's toys, general fitness, military and police applications, courier services, bicycle racing and bicycle stunts.
Attitudes to electric bikes have changed in recent years. For a long time they were seen by cyclists as 'cheating' and by non-cyclists as being just like a bike, but uglier and far more expensive. This new breed of best-in-class electric bikes feel more natural, look more normal, and people are coming around to the idea that a ride with the convenience of a bike but without all the sweat and effort is a Very Good Thing. 
The Pivot Shuttle breaks the mold when it comes to e-mountain bikes. This ballsy, carbon-frame bike, with Shimano Di2, has 140mm of rear travel, 150mm up front, and a 150mm dropper post. A Shimano STePS e8000 drive unit, paired with a 500Wh battery, provides 20 mph of pedal assist, so you can skip the lift line when you hit the bike park and zip right to the good stuff. The 27.5-inch wheels are nimble and eat up nearly anything in their path, and the massive 2.8-inch tires have huge knobs that grip the trail like Velcro.
First, think about what you need your bike for -- if it's just for a short city commute, in among traffic, then consider a smaller frame that's easy to manoeuvre through cars. The GoCycle G3 (right) is impressively nimble and its electric assistance will help propel you up to 15 mph (24 kph). Better yet, it has built-in lights, automatic gears and you can customise the amount of power the motor provides using a phone app.
Visually, the Pedego City Commuter Classic Electric Bike is stunning – a smart blend of yesteryear's style and today's technology. Pleasantly high handlebars, a sprung seat, and lovely Schwalbe Fat Frank tires make it very comfortable. Stopping is taken care of by powerful disk brakes, front and rear. Lights are included, as is a useful cargo rack. From an e-bike standpoint, the Pedego Classic City Commuter sports a reliable, hub-mounted motor driven by a 36-volt, 10-amp battery. There's a digital display with a trip computer, odometer, speedometer, pedal assist level, and battery charge information.

Some argue, that an ebike should have some kind of front suspension, i.e. be able to cope with potholes at higher speed or off-road conditions. However, in countries with flat roads (e.g. Switzerland, Germany or Holland) you don't need that extra weight for extra price if you stay on roads and/or drive slowly in difficult terrain. Some makes (like the Stromer) let you choose.


The Espin is powered by a 350-watt motor that’s rated for trips up to 50 miles (depending on the terrain and assist level). Once depleted, the battery fully charges in roughly five hours. Thankfully, Espin makes it easy to remove the battery, allowing you to quickly recharge it at home or in the office between trips. A backlit LCD control hub displays your basic metrics and battery life while in transit and LED headlights add a touch of light when needed.
(2) BICYCLE.--Every vehicle propelled solely by human power, and every motorized bicycle propelled by a combination of human power and an electric helper motor capable of propelling the vehicle at a speed of not more than 20 miles per hour on level ground upon which any person may ride, having two tandem wheels, and including any device generally recognized as a bicycle though equipped with two front or two rear wheels. The term does not include such a vehicle with a seat height of no more than 25 inches from the ground when the seat is adjusted to its highest position or a scooter or similar device. No person under the age of 16 may operate or ride upon a motorized bicycle.
In general, U.S. and European cycle manufacturers used to assemble cycles from their own frames and components made by other companies, although very large companies (such as Raleigh) used to make almost every part of a bicycle (including bottom brackets, axles, etc.) In recent years, those bicycle makers have greatly changed their methods of production. Now, almost none of them produce their own frames.
The recommendation depends a lot on what you plan to use the bike for and how you plan to ride. That said, I would recommend at least a 750 (if not 1,000) watt motor, and, if you want reasonable range, 48 or 52v cells with a minimum rating of 19ah. For shorter rides, you can use a smaller battery. Multiply battery voltage by amp hour rating to get battery watt hours. Divide the watt hours by the motors power rating to get a general idea of how many hours of heavy use you might get. I’d also recommend a mid drive as opposed to a hub drive, or to find a hub drive wheel rated to take your and the bicycle's combined weight.

It is very important that sensors work well and that they are integrated/tuned for good usability. Although ebikes do need some initial mental adjustment from riders, some model do much better then others, e.g. most testers seem to prefer the TDS Impluse over the Stöckli E.T. over the Stromer (which model?) with respect to reactivity. Of course, usability is subjective and some people may prefer one behavior over an other. However, cheap bikes may be just plain bad and this is why test driving is important.


The environmental effects involved in recharging the batteries can of course be reduced. The small size of the battery pack on an e-bike, relative to the larger pack used in an electric car, makes them very good candidates for charging via solar power or other renewable energy resources. Sanyo capitalized on this benefit when it set up "solar parking lots", in which e-bike riders can charge their vehicles while parked under photovoltaic panels.[66]
On the other hand, the battery doesn’t lock into the bike, which means you can’t just leave it on your bike when you park at the bike rack. Anyone could walk by and simply remove your battery. That seems like an oversight to me, though perhaps the designers assumed that such a small battery would just be easy to take with you. And it is. My wife could probably lose this battery in her purse.
×