At 42 pounds for a size medium frame (exceptionally light for an urban e-bike), this step-through model’s silent, mid-drive Bosch Active Line motor provides pedal assist up to 20 mph. And its 400Wh battery lasts a claimed 30 to a whopping 110 miles, depending on mode, speed, terrain, rider weight, cargo—all the usual stuff. With 26-inch wheels, 2-inch tires, round aluminum tubes, a swept-back handlebar, Shimano Sora 9-speed components, and an 11-32 cassette, the Parkway looks like an everyday, non-motorized city bike at first glance. But with an array of Bosch e-components—motor, battery, and Purion display—it has the zip to take you farther faster.
A 2008 market survey showed that the average distance traveled in the Netherlands by commuters on a standard bicycle is 6.3 kilometres (3.9 mi) while with an e-bike this distance increases to 9.8 kilometres (6.1 mi).[79] This survey also showed that e-bike ownership is particularly popular among people aged 65 and over, but limited among commuters. The e-bike is used in particular for recreational bicycle trips, shopping and errands.[79]
If you have dynamo-powered bicycle lights, you already own an electric-powered bicycle! Consider: as you pump your legs up and down on the pedals, you make the wheels rotate. A small dynamo (generator) mounted on the rear wheel produces a tiny current of electricity that keeps your back safety lamp lit in the dark. Now suppose you could run this process backward. What if you removed the lamp and replaced it with a large battery. The battery would kick out a steady electric current, driving the dynamo in reverse so that it spun around like an electric motor. As the dynamo/motor turned, it would rotate the tire and make the bike go along without any help from your pedaling. Hey presto: an electric bike! It may sound a bit far-fetched, but this is more or less exactly how electric bikes work.
Range is a key consideration with electric bikes, and is affected by factors such as motor efficiency, battery capacity, efficiency of the driving electronics, aerodynamics, hills and weight of the bike and rider. The range of an electric bike is usually stated as somewhere between 7 km (uphill on electric power only) to 70 km (minimum assistance) and is highly dependent on whether or not the bike is tested on flat roads or hills.[14] Some manufacturers, such as the Canadian BionX or American E+ (manufactured by Electric Motion Systems), have the option of using regenerative braking, the motor acts as a generator to slow the bike down prior to the brake pads engaging.[15] This is useful for extending the range and the life of brake pads and wheel rims. There are also experiments using fuel cells. e.g. the PHB. Some experiments have also been undertaken with super capacitors to supplement or replace batteries for cars and some SUVS.

Bicycle manufacturing proved to be a training ground for other industries and led to the development of advanced metalworking techniques, both for the frames themselves and for special components such as ball bearings, washers, and sprockets. These techniques later enabled skilled metalworkers and mechanics to develop the components used in early automobiles and aircraft.
Controllers for brushless motors: E-bikes require high initial torque and therefore models that use brushless motors typically have Hall sensor commutation for speed and angle measurement. An electronic controller provides assistance as a function of the sensor inputs, the vehicle speed and the required force. The controllers generally allow input by means of potentiometer or Hall Effect twist grip (or thumb-operated lever throttle), closed-loop speed control for precise speed regulation, protection logic for over-voltage, over-current and thermal protection. Bikes with a pedal assist function typically have a disc on the crank shaft featuring a ring of magnets coupled with a Hall sensor giving rise to a series of pulses, the frequency of which is proportional to pedaling speed. The controller uses pulse width modulation to regulate the power to the motor. Sometimes support is provided for regenerative braking but infrequent braking and the low mass of bicycles limits recovered energy. An implementation is described in an application note for a 200 W, 24 V Brushless DC (BLDC) motor.[43]
Federal law defines the limits of a low speed electric bike, equating it to a bicycle, and bypassing the definition of a motor vehicle only “For purposes of motor vehicle safety standards…” which means that the manufacturers of these bicycles don’t have to meet federal equipment requirements, and are instead governed by the manufacturing requirements of the Consumer Product Safety Act. There is no mention of exemption from other federal, state, and local traffic laws, or exemption from the definition of a motor vehicle for other purposes.3 This means the law applies to the manufacturer’s product and sale, avoiding federal safety requirements applying to a motor vehicle such as brake lights, turn signals and braking specifications. The goal of the law was to give businesses a legal framework to define and sell low speed electric bikes without the more stringent Federal classification of a motor vehicle. Ebikes that meet the criteria are considered a “bicycle”, do not meet the definition of a motor vehicle, and will be regulated by the Consumer Product Safety Commission. The law also grants the commission authority to add safety requirements to this product. The Federal law supersedes all state laws that equate bicycles to ebikes where the state law is more stringent (lower limits) on power and speed.
The Consumer Product Safety Commission(CPSC) stipulates that commercially manufactured low-speed electric bicycles, or tricycles, must have fully operable pedals, an electric motor not exceeding 750W of power and a top motor-powered speed not in excess of 20 miles per hour (32 km/h).[22] An electric bike remaining within these specifications will be regarded simply as a bicycle for purposes of safety standards. This supersedes any state law that is more stringent, but only regarding safety equipment required on electric bicycles and the standard of manufacture they must meet.[23]. The legislation enacting this amendment to the CPSC is also known as HR 727[24].
The first regularly produced device resembling the modern bicycle was unveiled in 1818. It was called the Dandy Horse. The two-wheeled ride-on Dandy Horse was the brainchild of German inventor Baron Karl Drais, and it featured a handle bar, a padded seat, and two inline wheels of nearly equal size. What it did not feature were pedals; this was a "running machine," thus its name in German, Laufmachine. The Dandy Horse saw only a flicker of popularity, and was largely an historical footnote within a handful of years, though its design is nearly mimicked in the child's balance bike of today.
From the beginning and still today, bicycles have been and are employed for many uses. In a utilitarian way, bicycles are used for transportation, bicycle commuting, and utility cycling. It can be used as a 'work horse', used by mail carriers, paramedics, police, messengers, and general delivery services. Military uses of bicycles include communications, reconnaissance, troop movement, supply of provisions, and patrol. See also: bicycle infantry.

"Bicycle" means either of the following: (1) A device having two wheels and having at least one saddle or seat for the use of a rider which is propelled by human power. (2) A device having two or three wheels with fully operable pedals and an electric motor of less than 750 watts (one horsepower), whose maximum speed on a paved level surface, when powered solely by such a motor while ridden, is less than 20 miles per hour.

Connect the battery to the speed controller and the throttle. Follow the instructions included with the kit to connect each part. Typically, you’ll only need to plug the connector on the speed controller into the connector on the battery, then repeat the process for the throttle. Be sure not to touch the battery wires together, as this could create a dangerous spark! [14]
If you're more concerned with conquering the countryside than the commute, Cyclotricity's Stealth is the one for you. It's a full-size mountain bike, with aggressive tyres and suspension on the front forks to absorb the rocks and bumps on the trails. It's comfortable to ride, and its motor can either give you assistance while you ride, or you can just hit the throttle to rocket over hills with no effort on your part.
Electric-assisted bicycles are treated as human-powered bicycles, while bicycles capable of propulsion by electric power alone face additional registration and regulatory requirements as mopeds. Requirements include electric power generation by a motor that cannot be easily modified, along with a power assist mechanism that operates safely and smoothly. In December 2008, The assist ratio was updated as follow: