EcoBike offers three e-bike models. The Vatavio fold-and-carry electric bike (pictured above) is innovative and well constructed. The Elegance (pictured below) is a classic design with step-through frame, offering an easy, comfortable ride. The AdventureÂ’s revolutionary frame design allows for true versatility, going from the pavement to mountain trails with ease.
More powerful pedelecs which are not legally classed as bicycles are dubbed S-Pedelecs (short for Schnell-Pedelecs, i.e. Speedy-Pedelecs) in Germany. These have a motor more powerful than 250 watts and less limited, or unlimited, pedal-assist, i.e. the motor does not stop assisting the rider once 25 km/h has been reached. S-Pedelec class e-bikes are therefore usually classified as mopeds or motorcycles rather than as bicycles and therefore may (depending on the jurisdiction) need to be registered and insured, the rider may need some sort of driver's license (either car or motorcycle) and motorcycle helmets may have to be worn.[14] In the United States, many states have adopted S-Pedelecs into the Class 3 category. Class 3 ebikes are limited to <=750 watts of power and 28 mph.[15]
Electric Motor. Having a battery that will last long is just one piece of the puzzle. The electric motor should be powerful enough to move the bike on flat surfaces without any problems and to overcome some low-steep slopes. It will help you out on steeper slopes, it won’t let you down. If the motor or “the engine” is more powerful you’ll be able to accelerate faster and to reach a higher momentum. This will allow you to reach your destination faster and without you getting tired.

By 1898 a rear-wheel drive electric bicycle, which used a driving belt along the outside edge of the wheel, was patented by Mathew J. Steffens. Also, the 1899 U.S. Patent 627,066 by John Schnepf depicted a rear-wheel friction “roller-wheel” style drive electric bicycle.[7] Schnepf's invention was later re-examined and expanded in 1969 by G.A. Wood Jr. with his U.S. Patent 3,431,994. Wood’s device used 4 fractional horsepower motors; connected through a series of gears.[8]
Range is a key consideration with e-bikes, and is affected by factors such as motor efficiency, battery capacity, efficiency of the driving electronics, aerodynamics, hills and weight of the bike and rider.[36][37] Some manufacturers, such as the Canadian BionX or American Vintage Electric Bikes,[38] have the option of using regenerative braking, the motor acts as a generator to slow the bike down prior to the brake pads engaging.[39] This is useful for extending the range and the life of brake pads and wheel rims. There are also experiments using fuel cells. e.g. the PHB. Some experiments have also been undertaken with super capacitors to supplement or replace batteries for cars and some SUVS. E-bikes developed in Switzerland in the late 1980s for the Tour de Sol solar vehicle race came with solar charging stations but these were later fixed on roofs and connected so as to feed into the electric mains.[40] The bicycles were then charged from the mains, as is common today. While ebike batteries were produced mainly by bigger companies in past, many small to medium companies have started using innovative new methods for creating more durable batteries. State of the art, custom built automated precision CNC spot welding machines[41] created 18650 battery packs[42] are commonly used among Do-it-yourself ebike makers.
E-bikes mostly use motors and battery options from a few major suppliers: Bosch, Yamaha, Shimano, and Brose. A few other brands exist, but are less reliable or powerful. Some, like the Yamaha system, have more torque and others are quieter. But generally all four make good options. Look for motor output (in watts) which will give you an idea of total power. But watt hours (Wh) is perhaps a better figure to use—it takes into account battery output and life to give a truer reflection of power.
×