I did my commute a few times with the Rattan and while I would never give up my “bike store” e-bike for this, it was a worthy substitute. It never gave out on the big hills, nor did I have to brake because I felt the bike was falling apart. The frame is a little small for 6-foot me but it only comes in one size. I really miss the low rolling drag of having road tires however and this is something that both Rattan and Ancheer could improve upon. I don’t think many people are seriously off-roading with these bikes. Put some Schwalbe Big Bens on there!
Electric bikes are becoming a convenient and fun way to commute around a city, but they can be pricey. The average e-bike can cost $3,000, with some models getting up to $5,000 or more. But these prices are dropping, as new models come onto the market — and if you don’t mind giving up some of the glossier, high-tech features like embedded digital displays, retractable cable locks, and and theft tracking and recovery, you can find a really good quality e-bike for under $1,500.
Conversion kits, on the other hand, are sold and installed separately on traditional bicycles. They are harder to setup and conceal, and require some basic mechanical ability and a little bit of ‘elbow grease’ to install. The advantage of conversion kits is that you can choose almost any standard bicycle, and you have the freedom to change or upgrade components as you go. A conversion kit will also allow you to achieve higher power and speed ratings that are not possible on most pre-built electric bike models. Kits are great for tall or heavy riders because they can opt for a larger bike, with higher power and weight carrying capacity. People living in hilly terrain may require the additional torque to handle extremely large inclines. For people who prefer a specific bike model or just love to go faster, a conversion kit offers enormous flexibility.
The two most common electric motor styles used in today’s e-bikes are hub motors and mid-drive motors. The Freedom uses a hub motor, which was located in the center of the rear wheel. Hub motors typically don’t offer the same natural maneuverability as the increasingly more common (and more expensive) mid-drive motors because their weight is concentrated in the rear of the bike. It can be jarring when the motor prevents you from going faster than the allotted speed, especially when cruising downhill, but 20 mph is the legal maximum for e-bikes in the US. (In the EU, it’s even lower: 25 km/h, or 15.5 mph.)
I converted my Kona Dew Deluxe to electric with a controller and 1000 watt front wheel. The SLA batteries I tried initially were _functional_, but the bike had a range of about 6 miles @ approx. 50% throttle use. Since upgrading to the Joyisi pack, the utility of the bike has increased exponentially. I need to add a better gauge so I can drain the battery more fully between charges, but I'm getting at least 20 miles per charge, including some very aggressive uphill segments. On flat ground, the battery powers the bike to approx. 35MPH; even on really steep hills with minimal pedal assist, I do at least 15MPH. Biking 15MPH uphill with little/no effort is EPIC.
By 1898 a rear wheel drive electric bicycle, which used a driving belt along the outside edge of the wheel was patented by Mathew J. Steffens. Also, the 1899 Template:US Patent by John Schnepf depicted a rear wheel friction “roller-wheel” style drive electric bicycle.[5] Schnepf's invention was later re-examined and expanded in 1969 by G.A. Wood Jr. with his Template:US Patent. Wood’s device used 4 fractional horsepower motors; each rated less than ½ horsepower and connected through a series of gears.[6]
But electric bicycles—e-bikes—are new territory for me. Broadly speaking, there are two basic options in e-bike land: power-on-demand and pedal-assist. With the former, the rider can control the speed with a throttle instead of just pedaling. Think moped but with an electric motor instead of internal combustion. Pedal-assist, by contrast, requires the rider to do some of the work. The electric motor won't engage unless the rider is pedaling.
To be honest, this bike is really designed for city commuters or kids riding around the suburbs. The fact that it’s foldable will let you carry it on the bus, on the train or even on the plane. It’s just not designed for heavy riding, long distances or tough terrains. If you want something sleek and fabulous at a fraction of the cost of most other e-bikes, this baby’s for you.
Riding a pedal-assisted road bike may seem counterintuitive but during longer training sessions, the minimal addition of power helps prevent overall muscle fatigue and injury. Similarly, those looking to enjoy longer scenic routes will appreciate the general boost an electric drive provides. With a top speed of 28 mph, the Road E+1 uses three power modes to give you ultimate control over your ride and assistance level. A four-point sensory system monitors the pedaling force allowing the motor to amplify your movements seamlessly.
The environmental effects involved in recharging the batteries can of course be reduced. The small size of the battery pack on an e-bike, relative to the larger pack used in an electric car, makes them very good candidates for charging via solar power or other renewable energy resources. Sanyo capitalized on this benefit when it set up "solar parking lots", in which e-bike riders can charge their vehicles while parked under photovoltaic panels.[66]

The oldest patent for an electric bike I've been able to find at the US Patent and Trademark Office is this one, by Ogden Bolton, Jr. of Canton Ohio, which was filed in September 1895 and granted three months later. You can see from these original diagrams that it bears an amazingly close resemblance to modern electric bikes. In the general picture on the left, you can see there's a hub motor on the rear wheel (blue), a battery suspended from the frame (red), and a simple handlebar control to make the thing stop and go. In the more detailed cutaway of the hub motor on the right, you can see there's a six-pole magnet in the center (orange) bolted to the frame and an armature (made from coiled wire, yellow) that rotates around it when the current is switched on. It's quite a hefty motor even by modern standards; Ogdon mentions "a heavy current at low voltage—for instance, to carry one hundred amperes at ten volts." So that's 1000 watts, which is about twice the power of a typical modern bike hub motor.
But unlike other battery mounted controllers, the Baserunner also stands on its own too. If you upgrade to a different battery model in the future that doesn't fit the cradle, simply remove the Baserunner from the base and use it as a miniature stand alone controller with your new battery pack. That's Grin thinking about your future options for you.
The batteries are the most important parts of the bike, because (if you don't do any pedaling) they contain all the power that will drive you along. Typical electric bike batteries make about 350–500 W of power (that's about 35–50 volts and 10 amps), which is about a quarter as much as you need to drive an electric toaster. In theory, you could use any kind of battery on a bicycle. In practice, however, you want to use something that stores lots of power without being too heavy—or you'll be using half your power just moving the battery along! That tends to rule out heavy lead-acid batteries like the ones that start cars, though some electric bikes do use them. Lightweight lithium-ion batteries, similar to those used in laptop computers, mobile (cellular) phones, and MP3 players, are now the most popular choice, though they're more expensive than older rechargeable battery technologies such as nickel-cadmium ("nicad"). Typical batteries will give your bicycle a range of 10–40 miles between charges (depending on the terrain) and a top speed of 10–20 mph (which is about the maximum most countries allow for these vehicles by law). You can extend the range by pedaling or free-wheeling some of the time.
Some of the Rad Wagon’s (small) flaws became apparent once I added more weight to the bike. The integrated rear rack can attach various panniers, platforms, or baskets to cary your cargo, but I was most concerned with hauling my two kiddos to school. Riding the bike with my three year old was a cinch; he held on to the bars in the caboose (available as an accessory add-on) and enjoyed the view. Adding my very tall, almost seven-year-old daughter, however, was a bit more complicated.

Some countries require child and/or adult cyclists to wear helmets, as this may protect riders from head trauma. Countries which require adult cyclists to wear helmets include Spain, New Zealand and Australia. Mandatory helmet wearing is one of the most controversial topics in the cycling world, with proponents arguing that it reduces head injuries and thus is an acceptable requirement, while opponents argue that by making cycling seem more dangerous and cumbersome, it reduces cyclist numbers on the streets, creating an overall negative health effect (fewer people cycling for their own health, and the remaining cyclists being more exposed through a reversed safety in numbers effect).[citation needed]
Yes, there are less expensive ebikes on the market but most come with a few serious caveats. The Espin Sport delivers on the full promise of an electric bike, but in a more affordable fashion. This bike isn’t going to tow you around for a 60-mile round-trip endeavor but those seeking their first ebike will get plenty of return on their investment with this model.
As of May 19, 2009, Nevada amended its state transportation laws to explicitly permit electric bicycles to use any "trail or pedestrian walkway" intended for use with bicycles and constructed with federal funding, and otherwise generally permits electric bicycles to be operated in cases where a regular bicycle could be. An electric bicycle is defined as a two- or three-wheeled vehicle with fully operable pedals with an electric motor producing up to 1 gross brake horsepower and up to 750 watts final output, and with a maximum speed of up to 20 miles per hour on flat ground with a 170 pound rider when powered only by that engine. (AB441, amending NRS 480, 482 and other sections)

Whether squeezing onto the 4 train or pedaling through Lower Manhattan, I notice a few curious glances at the bike with the big battery in the center of the frame. This is not surprising; e-bikes are huge practically everywhere but the US. According to the latest figures from the Confederation of the European Bicycle Industry, e-bike growth in the UK is up from 40,000 units in 2016 to 63,000 in 2017.


On the road, it takes only a few turns of the pedals to activate the Vado’s motor and get it up to speed. In Turbo mode — the bike’s highest level of pedal-assist — the Vado reaches speeds of up to 28 miles per hour, after which the electric drive system automatically shuts off to conserve power (and abide by local law). A built-in LED readout on the handlebars allows riders to monitor battery life, check current speed, and track calories burned while also being able to glance at distance traveled. The Turbo Vado Mission Control app (iOS/Android) also connects to the bike via Bluetooth and allows riders to further tune their ride and adjust the bike’s settings.
Electric bikes are here in a big way. Liberated from some of the normal constraints of standard bike design like weight and gearing, e-bike design has exploded; if you can imagine it, someone has built it. From cargo bikes to city bikes, messenger bikes to mountain bikes, road bikes, folding bikes, and even beach cruisers, there is something for everyone. The beauty of e-bikes is that they make the joy of cycling accessible to so many people in so many ways.

We take a look at the phenomenon sweeping the trails across Europe – Electric Mountain Bikes. After extensive research and a visit to Eurobike, our team hand-picked what we feel to be the best electric mountain bikes in 2018 using Yamaha, Shimano and Bosch eBike systems. Following the visit to Eurobike, it was clear that … Continue reading Best Electric Mountain Bikes 2018 – The Fully Charged Picks


The basic shape and configuration of a typical upright or "safety bicycle", has changed little since the first chain-driven model was developed around 1885.[7][8][9] However, many details have been improved, especially since the advent of modern materials and computer-aided design. These have allowed for a proliferation of specialized designs for many types of cycling.
There is a lot of information on the internet about electric bikes. Hopefully you have found lots of useful information right here, on this website. Based on this information, you may already have a preference for a specific electric bicycle and / or (technical) components. Your friends that ride e-bikes can also advise you based on their own experiences. But there is only one way you will know if you really make the right choice: take a test drive. During a test drive you will discover how close the riding experience is to your expectations.
By Max Shumpert: This article has been updated to reflect the most accurate information regarding best e-bikes available for those who are interested in new technology combined with traditional bikes. The best 5 available have changed, and information has been added to assist individuals in finding the best electric bicycles currently available on the market. The FAQ has also been updated.
And the last product update to kick off the year is the pilot release of our new Baserunner motor controller. We spent much of last summer and fall trying to cram an even more miniature version of the Phaserunner into compact profile that could fit inside the controller cavity of the popular Hailong downtube battery cradles, and by golly we did it. While not as powerful as the Phaserunner (just 55A max phase current, and 60V max battery voltage), the Baserunner is perfectly suited to the smaller geared and direct drive hub motors using the Higo Z910 plug. This allows for a very tidy installation with no separate controller to mount.

The Domane+ e-road bike is the electric version of Trek’s popular Domane. It’s designed for riders who appreciate that bike’s reliable comfort and IsoSpeed technology but want the added fun and function of e-assist. It’s also the ideal companion for anyone coming back from injury, slower riders who want to mix it up with a speedy group, and couples with different fitness levels. A Bosch Performance Line Speed motor provides a very welcome 28 mph of pedal assist, and the 500Wh Powertube battery sleekly integrates into the down tube. Also integrated: front and rear lights, which are powered by the battery—no charging required.
Alberta identifies e-bikes as "power bicycles" and is consistent with the federal definition of "power-assisted bicycle" in MVSR CRC, c 1038 s 2.[19] Motor output must not exceed 500 W (0.671 hp) and e-bikes cannot travel faster than 32 km/h (20 mph). Fully operable pedals are required. No driver's license, vehicle insurance, or vehicle registration is required. Operators must be 12 years of age or older. All operators are required to wear a motorcycle helmet meeting the standards set in AR 122/2009 s 112(2).[20] A passenger is permitted only if the e-bike is equipped with a seat designated for that passenger.[21]
I eventually got used to it over time, but at first having both kids behind me made the bike feel like it would sway to or fro perilously. I think it was just too much weight to navigate safely, and would be fine with younger kids that didn’t come close to the 120-pound weight limit for the rear cargo area. Overall I’m still a bit partial to a box-style bike if I’m hauling multiple kids and want to be able to see what they’re doing.
State and Local Laws dictate your use, but cannot constitutionally supersede the federal law – Any ebike purchased within the 750W/20mph limits has no fear of being under federal motor vehicle classification, nor can any state classify them a motor vehicle. The ebike is considered a ‘bicycle’ for consumer purposes. However, the State Laws on local bike paths and local thruways may prohibit or limit ebike access. When bike path signs use word such as ‘motor vehicles’ and ‘motorbikes’ , the laws are likely referring to gas-ICE motorbikes/dirt bikes/scooters, and not ebikes. Other references to ‘motorized bicycles’ or ‘motorized vehicles’ sound more inclusive and probably are intended for either ebikes or gas mopeds. If in doubt, you always have the option to pedal unassisted by completely powering your bike down. Even though Federal law grant ebikes a bicycle status, the common consensus found in my research allows local and state law to add additional regulation to pathway and road access, just because “it has a motor”. So the Federal laws protects the consumer from the burden of motor vehicle requirements, but not the restrictions to local and state right of ways enjoyed by all non-motored bicycles.
The two most common types of hub motors used in electric bicycles are brushed and brushless. Many configurations are available, varying in cost and complexity; direct-drive and geared motor units are both used. An electric power-assist system may be added to almost any pedal cycle using chain drive, belt drive, hub motors or friction drive. BLDC hub motors are a common modern design. The motor is built into the wheel hub itself, and the stator fixed solidly to the axle, and the magnets attached to and rotating with the wheel. The bicycle wheel hub is the motor. The power levels of motors used are influenced by available legal categories and are often, but not always limited to under 750 watts.
There is a lot of information on the internet about electric bikes. Hopefully you have found lots of useful information right here, on this website. Based on this information, you may already have a preference for a specific electric bicycle and / or (technical) components. Your friends that ride e-bikes can also advise you based on their own experiences. But there is only one way you will know if you really make the right choice: take a test drive. During a test drive you will discover how close the riding experience is to your expectations.

Mid-mounted system means that the electric motor is not built into the wheel but is usually mounted near (often under) the bottom bracket shell. Mid-drive systems tend to feel more like a normal bike, since they drive the pedals, just like your legs, and those who frequently climb long, steep hills tend to prefer mid-drive systems for their ability to handle long climbs. As they can leverage the bicycles lowest gears for climbs, mid drive systems can also leverage the high gears to reach higher speeds on flat areas than a hub system. The mid-drive motor drives the crank, instead of the wheel itself, which multiplies its power and allows it to better take advantage of the bike’s existing gears. If the rider changes the gears appropriately, the motor can turn closer to its ideal rotations per minute which makes a huge difference while climbing hills, so this is a perfect option for those who love mountain biking.


Because I am in an area with quite a lot of hills and steep inclines, some very steep, and the motor on the bike handles these hills effortlessly along with pedal assist. I will say I am not fit in anyway and there is no way I would have got up half of the hills I got up if it were not for the 250 watt motor on this bike, the low , medium and high pedal assist options are great and it is easy to assess which option you'll need depending on the hill.The battery was a lot heavier than I expected when holding it, feels like holiding a 3 LTR bottle of coca cola but I can forgive that

We've also released our first native 72V battery pack in a conventional downtube battery casing, assembled using the high power Samsung 27100 40T cells so that even with the small 8Ah capacity it is able to deliver 40-50A continuous currents. This is an ideal battery for fast and sporty offroad ebike builds, allowing powerful performance without the weight or complexity of most 72V setups (either two 36V packs in series or a large triangle frame battery).
×