"Bicycles" and "Electric Bicycles" are legally defined in the Texas Transportation Code Chapter 551., titled "Operation of Bicycles, Mopeds, and Play Vehicles" in Subchapter A, B, C, and D.[58] The following definition of electric bicycle was passed by the Texas legislature in 2001. "Electric bicycle" means a bicycle that is designed to be propelled by an electric motor, exclusively or in combination with the application of human power, cannot attain a speed of more than 20 miles per hour without the application of human power; and does not exceed a weight of 100 pounds. The department or a local authority may not prohibit the use of an electric bicycle[0] on a highway that is used primarily by motor vehicles. The department or a local authority may prohibit the use of an electric bicycle[0] on a highway used primarily by pedestrians. 

At the top end, the 20mph speed limit isn't an absolute, like the speed of light. It's just the most you'll get from the motor. I was able to get it up to 28mph on a flat road (there are no other roads where I live) in Turbo mode and 8th gear, but it took hard work to get there and maintain the speed. The easiest comparison is my mountain bike, where I've hit 23mph on that same stretch of road—and that took a heck of a lot of effort. Exactly how much effort does it take to ride? I have a 15-mile route that I ride on both my mountain bike and cyclecross bike. According to my Apple Watch, I generally burn around 1,400 or so calories on a brisk ride. I'll probably average around 13mph or so on my Marlin and between 16 and 17.5mph on my XO2. I averaged 14.9mph and burned a hair over 1,000 calories with the Bulls Cross E8.
In a parallel hybrid motorized bicycle, such as the aforementioned 1897 invention by Hosea W. Libbey, human and motor inputs are mechanically coupled either in the bottom bracket, the rear or the front wheel, whereas in a (mechanical) series hybrid cycle, the human and motor inputs are coupled through differential gearing. In an (electronic) series hybrid cycle, human power is converted into electricity and is fed directly into the motor and mostly additional electricity is supplied from a battery.
Under the statute, mopeds must be registered. To be registered under Hawaii law a moped must bear a certification label from the manufacturer stating that it complies with federal motor vehicle safety standards (FMVSS). A moped must also possess the following equipment approved by the D.O.T. under Chapter 91: approved braking, fuel, and exhaust system components; approved steering system and handlebars; wheel rims; fenders; a guard or protective covering for drive belts, chains and rotating components; seat or saddle; lamps and reflectors; equipment controls; speedometer; retracting support stand; horn; and identification markings.
(ii) a vehicle equipped with two or three wheels, foot pedals to permit muscular propulsion, and an independent power source providing a maximum of 2 brake horsepower. If a combustion engine is used, the maximum piston or rotor displacement may not exceed 3.05 cubic inches, 50 centimeters, regardless of the number of chambers in the power source. The power source may not be capable of propelling the device, unassisted, at a speed exceeding 30 miles an hour, 48.28 kilometers an hour, on a level surface. The device must be equipped with a power drive system that functions directly or automatically only and does not require clutching or shifting by the operator after the drive system is engaged.
This article did a good job of trying to justify the assist speed limits but fell short of detailing how that can ever be effectively enforced. In reality the only enforcement that is going to work is applied speed limits to use of bikes and ebikes. For example, it makes sense that a bike lane on a street that the speed limit of vehicles is the speed limit of the bikes/ebikes. On sidewalks and shared pedestrian paths the speed limit probably does need to be in the 15-20mph range to match traditional bikes speeds on those paths.
Bicycle manufacturing proved to be a training ground for other industries and led to the development of advanced metalworking techniques, both for the frames themselves and for special components such as ball bearings, washers, and sprockets. These techniques later enabled skilled metalworkers and mechanics to develop the components used in early automobiles and aircraft.
According to Utah Code 41-6a-102 (17) an electric assisted bicycle is equipped with an electric motor with a power output of not more than 750 watts and is not capable of further assistance at a speed of more than 20 MPH, or at 28 MPH while pedaling and using a speedometer. New laws specifically exclude electric pedal-assisted bicycles as "motorized vehicles" and bicycles are permitted on all state land (but not necessarily on Indian Reservations, nor restrictive municipalities, such as in Park City Code 10-1-4.5 2) if the motor is not more than 750 Watts, and the assistance shuts off at 20 mph (Utah Traffic Code 53-3-202-17-a 1). E-bikes sold in Utah are required to have a sticker that details the performance capacity. Children under 14 can operate an electric bicycle if accompanied by a parent/guardian, but children under 8 may not. (Utah code 41-6a-1115.5) No license, registration, or insurance is required by the State but some municipalities may require these measures (Salt Lake City and Provo require registration).

Class 1 makes great inroads to establish set boundaries for off road/natural surface trail access for eMountain bikes. There is fierce resistance from some mountain biking purists to allow ebikes on trails. BPSA and IMBA have done good work to justify the impact of class 1 ebikes on natural surface trails, and eliminate the wear-n-tear argument, though IMBA members are not 100% on board.
Electric bikes vary widely in price, anywhere from $999 to $2000+, so you’ll have to determine how important certain features are to the overall cost. (However, we made a list of electric bikes under $1.000 here.)The battery used to power an electric bike motor is a key factor in how expensive a particular bike is. In general, the more miles a battery can provide, the more expensive it will be, so it’s important to consider the type of riding you plan on doing. If you know you’ll be using predominantly motor-generated power, then paying a bit more for a battery with a longer range is probably a good idea. Alongside with a good quality battery, motor is the most expensive part of an electric bike. Most standard electric bike motors come with a power rating of 250W, and the industry standard in the US is 500W. Maximum power of the motor you can legally use in the US is 750W. The non-electric components used on an electric bike are almost the same with those used on the conventional bicycles. The quality of the components used will affect the maintenance costs of your electric bike down the road, and more quality components mean higher upfront cost. Lastly, there is the frame. Since the frame is basically the skeleton of your electric bike, it’s wise to select a good material that will be the optimum combination of weight and durability.
The other motor is the G311, a front equivalent to the wonderfully silent G310 rear motors we introduced late last year. This motor will be replacing the G01 hub for our front mini geared kits. It's a tad lighter (2.3kg), much quieter (spiral gears!), but still has the features from the G01 that we loved. That means a side cable exit, ISO disk rotor compatibility, and 10mm round axle.
Biking is awesome, but biking uphill is not. Commuting by bike is environmentally friendly, fun and good for your health, but presenting your sweaty self to your office coworkers in not fun at all. Fortunately, there is a solution! Electric bicycles offer the same great benefits as traditional bicycles including cost savings, health improving, plus some additional advantages like efficiency in climbing hills, less stress on knees and joints, which is convenient for people of all ages and health.
×