Electric bicycles use rechargeable batteries, electric motors and some form of control. This can be a simple as an on-off switch but is more usually an electronic pulse width modulation control. Electric bicycles developed in Switzerland in the late 1980s for the Tour de Sol solar vehicle race came with solar charging stations but these were later fixed on roofs and connected so as to feed into the electric mains.[13] The bicycles were then charged from the mains, as is common today. Battery systems in use include lead-acid, NiCd, NiMH and Li-ion batteries.


Toe-clips and toestraps and clipless pedals help keep the foot locked in the proper pedal position and enable cyclists to pull and push the pedals. Technical accessories include cyclocomputers for measuring speed, distance, heart rate, GPS data etc. Other accessories include lights, reflectors, mirrors, racks, trailers, bags, water bottles and cages, and bell.[52] Bicycle lights, reflectors, and helmets are required by law in some geographic regions depending on the legal code. It is more common to see bicycles with bottle generators, dynamos, lights, fenders, racks and bells in Europe. Bicyclists also have specialized form fitting and high visibility clothing.
Introduction A quick of note of my experiences riding a Moustache Dimanche eBike, kindly provided by Fully Charged, on a spectacular 4 day trip, coast-to-coast across Italy. Overall, an amazing experience in terms of the quality of the ride, the scenery and the new experience of quite painless climbing of the many steep hills. I … Continue reading The joys of crossing Italy coast 2 coast on an eBike – by Andreas Credé
Electric bicycles have two main methods of operation: pedal-assist and/or throttle-control. As the name implies, pedal-assist “assists” your pedaling and requires some input. With this method, a torque sensor picks up movement or stress to determine the power requirements of the rider. Everything is automated so there’s nothing to think about, just jump on and start riding. Some bikes have multiple settings, while others have just one setting with the addition of a throttle control. Depending on the setting, pedal-assistance can help a little – or a lot. At lower settings, pedal-assist is barely noticeable but helps extend your range. At higher settings, the power is quite obvious and feels like a strong wind at your back with the motor doing most of the work while you pedal along.
The oldest patent for an electric bike I've been able to find at the US Patent and Trademark Office is this one, by Ogden Bolton, Jr. of Canton Ohio, which was filed in September 1895 and granted three months later. You can see from these original diagrams that it bears an amazingly close resemblance to modern electric bikes. In the general picture on the left, you can see there's a hub motor on the rear wheel (blue), a battery suspended from the frame (red), and a simple handlebar control to make the thing stop and go. In the more detailed cutaway of the hub motor on the right, you can see there's a six-pole magnet in the center (orange) bolted to the frame and an armature (made from coiled wire, yellow) that rotates around it when the current is switched on. It's quite a hefty motor even by modern standards; Ogdon mentions "a heavy current at low voltage—for instance, to carry one hundred amperes at ten volts." So that's 1000 watts, which is about twice the power of a typical modern bike hub motor.
The federal Consumer Product Safety Act defines a "low speed electric bicycle" as a two or three wheeled vehicle with fully operable pedals, a top speed when powered solely by the motor under 20 mph (32 km/h) and an electric motor that produces less than 750 W (1.01 hp). The Act authorizes the Consumer Product Safety Commission to protect people who ride low-speed electric vehicles by issuing necessary safety regulations.[63] The rules for e-bikes on public roads, sidewalks, and pathways are under state jurisdiction, and vary.
Another big upgrade here is the 36V battery. Instead of the 8Ah that the Ancheer had, Rattan has a 10.4Ah battery. The battery actually looks a lot like this one that goes for $190 on ebay or a little more on Amazon. Rattan tells me it is full of genuine LG cells which seem to perform quite well. On cold days, my 15 km (10 mile) very hilly commute would use up about half of the battery (Ancheer would be dying on the way back home). I imagine someone significantly under my 200+lbs could approach the 25 miles Rattan says you can get on throttle alone or up to 50 miles of pedal assist. I’ll just say it was significantly more than the Ancheer.
Another style is the recumbent bicycle. These are inherently more aerodynamic than upright versions, as the rider may lean back onto a support and operate pedals that are on about the same level as the seat. The world's fastest bicycle is a recumbent bicycle but this type was banned from competition in 1934 by the Union Cycliste Internationale.[43]
There are many possible types of electric motorized bicycles with several technologies available, varying in cost and complexity; direct-drive and geared motor units are both used. An electric power-assist system may be added to almost any pedal cycle using chain drive, belt drive, hub motors or friction drive. The power levels of motors used are influenced by available legal categories and are often limited to under 750 watts.
Electric-assisted bicycles are treated as human-powered bicycles, while bicycles capable of propulsion by electric power alone face additional registration and regulatory requirements as mopeds. Requirements include electric power generation by a motor that cannot be easily modified, along with a power assist mechanism that operates safely and smoothly. In December 2008, The assist ratio was updated as follow:
The first mechanically-propelled, two-wheeled vehicle may have been built by Kirkpatrick MacMillan, a Scottish blacksmith, in 1839, although the claim is often disputed.[20] He is also associated with the first recorded instance of a cycling traffic offense, when a Glasgow newspaper in 1842 reported an accident in which an anonymous "gentleman from Dumfries-shire... bestride a velocipede... of ingenious design" knocked over a little girl in Glasgow and was fined five shillings.[21]
Some power-on-demand only e-bikes can hardly be confused with, let alone categorised as, bicycles. For example, the Noped is a term used by the Ministry of Transportation of Ontario for e-bikes which do not have pedals or in which the pedals have been removed from their motorised bicycle. These are better categorised as electric mopeds or electric motorcycles.
What we especially love is how quiet this e bicycle is. If you’re riding down the street or through the park, the gentle hum of the motor is unnoticeable. This is because it’s hidden by the sound of your smooth pedaling. If you’re not into flashy gadgets, any ordinary person would assume you’re riding a conventional peddle bike. This is a great commuter bike.
At Volt, when we sell an ebike, we like to keep in touch with our customers. This is not only to find out how their electric bike is performing and if they are happy with it, but also to learn how they use it. Many have impressive stories to tell. We have heard from people using Volt bikes in the most diverse ways and places, from the Scottish Highlands to central London.
An electric bike (also called e-bike, power-assist bike, pedelec…) is a fairly conventional bike combined with a battery and motor that helps out when you are pedaling to make it easier to get uphill or completely takes over driving and allows you to cruise along. Top quality electric bikes, along with electric scooters, are revolutionizing the bicycle industry. Not only is riding an e-bike simple and easy, but a rider can significantly extend their range with minimal cost or effort.
The drivetrain begins with pedals which rotate the cranks, which are held in axis by the bottom bracket. Most bicycles use a chain to transmit power to the rear wheel. A very small number of bicycles use a shaft drive to transmit power, or special belts. Hydraulic bicycle transmissions have been built, but they are currently inefficient and complex.
The first functioning electric motor was displayed in the early 19th century, though the device constructed by British scientist Michael Faraday did little more than swirl a wire around a magnet when an electric charge was introduced. Still, the concept proved that electricity could do work. Functional electric motors would follow in many forms after that achievement in 1821. Soon scientists and tinkerers around the world, including visionaries such as Nikola Tesla, were experimenting with all manner of electric motors -- some worked with DC power, others with AC. By the end of the century, myriad electric motors had been produced, capable of exerting enough force with enough reliable control that they were practical for use in myriad applications.
Both land management regulators and mountain bike trail access advocates have argued for bans of electric bicycles on outdoor trails that are accessible to mountain bikes, citing potential safety hazards as well as the potential for electric bikes to damage trails. A study conducted by the International Mountain Bicycling Association, however, found that the physical impacts of low-powered pedal-assist electric mountain bikes may be similar to traditional mountain bikes.[68]
As with all these bikes, the assisted speed is capped at 15mph, but unlike some of them, the Gtech eBike City or its identical (spec-wise) sibling the eBike Sport (this just has a standard frame rather than a step-through one) is light and agile enough for you to be able pedal harder without feeling like the weight is fighting you back down to 15mph. You can even, at a push, use it without the motor on flatter roads.
Besides voltage, batteries are rated by amp hours (AH). Although voltage seems to get the most attention, the amp hour rating of the battery is just as important. It is the measure of a battery’s capacity and provides a good indication of the range you can expect from an electric bike. Although lots of factors come into play in determining range (ie: rider weight, terrain, input, efficiency, etc.), a good rule of thumb is range is equal to AH. So under normal conditions, an average rider can expect 10 miles out of a 10AH battery (with no pedaling). With rider input, this number can be dramatically increased, so most 10AH batteries are rated “up to 20 miles” by the manufacturer which assumes pedaling. On pedal-assist bikes (which require pedaling), the range ratings are much higher because the rider is constantly assisting the motor and reducing the current draw.
The pedals on a motorised bicycle must be the primary source of power for the vehicle. If the motor is the primary source of power then the device cannot be classed as a motorised bicycle. For example, a device where the rider can twist a throttle and complete a journey using motor power only without using the pedals, would not be classed as a motorised bicycle.
The headlight/horn is completely frail, and prevents folding the bike. However, the wires broke off within two days (60 miles) of riding, so it wasn't an issue after I removed the light completely. Other than that, it's a great electric bike. I put about 24-40 miles per day on it, and it does the job well. I have steep hills during my ride and it really helps with the effort required to go uphill. The gears only go up to 7, which means that when on flat ground, and pedaling for all that I'm worth, I can only get up to 19 mph before the pedals just spin madly. I pass other cyclists when going uphill at nearly twice their speed, but not so much on flat ground or downhill. The rear has no suspension at all, so I bought a $50

The first functioning electric motor was displayed in the early 19th century, though the device constructed by British scientist Michael Faraday did little more than swirl a wire around a magnet when an electric charge was introduced. Still, the concept proved that electricity could do work. Functional electric motors would follow in many forms after that achievement in 1821. Soon scientists and tinkerers around the world, including visionaries such as Nikola Tesla, were experimenting with all manner of electric motors -- some worked with DC power, others with AC. By the end of the century, myriad electric motors had been produced, capable of exerting enough force with enough reliable control that they were practical for use in myriad applications.
It's a solid e-bike, but it's also very heavy one for a folding bike. I found it difficult carry when the bike is folded as the carrying handle is useless, and the center of gravity is towards to the rear wheel so one has to find a place in the rear of the bike to pick it up. Even when the bike is folded, it's bulky and heavy, It's difficult to walk with it while carrying it. It's easy to hurt one's back if he or she is not careful. I would not recommend carrying this bike up or down stairways.
The frame of a fat e-bike resembles that of a traditional bike, with front and rear portions that are a bit wider to accommodate the large tires. Your height and weight will dictate which frame size suits you best. You’ll want to go through the process of mounting and dismounting the bike to make sure you’re comfortable climbing on and off before you commit to it.
Because the power is applied through the chain and sprocket, power is typically limited to around 250–500 watts to protect against fast wear on the drivetrain. An electric mid-drive combined with an internal gear hub at the back hub may require care due to the lack of a clutch mechanism to soften the shock to the gears at the moment of re-engagement. A continuously variable transmission or a fully automatic internal gear hub may reduce the shocks due to the viscosity of oils used for liquid coupling instead of the mechanical couplings of the conventional internal gear hubs.
×