The time or distance an electric bike battery will run between chargings is impossible to judge with much accuracy. There are too many variables: terrain, speed, rider weight, bike load (shopping, kids, luggage), and more. However, we can make a few generalizations about an e-bike’s recharge time and overall working life. These generalizations should be used for comparison purposes only.

State and Local Laws dictate your use, but cannot constitutionally supersede the federal law – Any ebike purchased within the 750W/20mph limits has no fear of being under federal motor vehicle classification, nor can any state classify them a motor vehicle. The ebike is considered a ‘bicycle’ for consumer purposes. However, the State Laws on local bike paths and local thruways may prohibit or limit ebike access. When bike path signs use word such as ‘motor vehicles’ and ‘motorbikes’ , the laws are likely referring to gas-ICE motorbikes/dirt bikes/scooters, and not ebikes. Other references to ‘motorized bicycles’ or ‘motorized vehicles’ sound more inclusive and probably are intended for either ebikes or gas mopeds. If in doubt, you always have the option to pedal unassisted by completely powering your bike down. Even though Federal law grant ebikes a bicycle status, the common consensus found in my research allows local and state law to add additional regulation to pathway and road access, just because “it has a motor”. So the Federal laws protects the consumer from the burden of motor vehicle requirements, but not the restrictions to local and state right of ways enjoyed by all non-motored bicycles.
Bosch eBike Systems – eBikes 101 What is an eBike? The eBike is one of the most agile, comfortable vehicles of our time. With the positive impacts on health, environment and society, electric bikes bring a new meaning to smart mobility. Their modern components and simple yet innovative design allow for a variety of eBiking adventures, from trekking through the …
Photo: Zap Electric's power-assist kit turns a conventional bike into an electric one. There's a bolt-on DC electric motor (weighing just over 3kg or 7lb) just above the back wheel, behind the police officer's foot, pressing against the tire and driving it by simple friction. The motor's powered by a compact lead-acid battery (weighing about 5.5 kg or 12 lb) inside a protective nylon bag. This kit adds quite bit of weight to the bike, but gives extra range and speed when needed. Photo taken in Santa Rosa, California by Rick Tang courtesy of US DOE/NREL.
E-bike usage worldwide has experienced rapid growth since 1998. In 2016 there were 210 million electric bikes worldwide used daily.[33] It is estimated that there were roughly 120 million e-bikes in China in early 2010, and sales are expanding rapidly in India, the United States of America, Germany, the Netherlands,[2] and Switzerland.[34] A total of 700,000 e-bikes were sold in Europe in 2010, up from 200,000 in 2007 and 500,000 units in 2009.[35]

Speaking of which, if you're used to non-electric cycles, be aware that e-bikes are heavy and capped at 25kph or 15.5mph. In many cases, that means the bike starts to feel like its actively fighting against you, if you try to push the speed higher than that by pedalling. That's especially true with heavier bikes, for obvious reasons, and can take a while to get used to. 


Most consumers want an e-bike that will accommodate its motor without being too cumbersome and will remain stable in spite of its electronic components. Some consumers want only the most basic of e-bike features, including lights, a cargo rack/basket, and a water bottle holder. Others are focused more heavily on safety features, such as brake type. And still others are concerned with convenience and portability.
Included in this shipment are the much awaited 3540 motors with their slick "UFO" design. These are the replacements for the older square style "H" motors, you may have noticed that this change was implemented last year with the 3525 front and rear motors. As always, we have the motors customized with a 10K NTC thermistor for thermal rollback using the CA3.
The "Dandy horse", also called Draisienne or Laufmaschine, was the first human means of transport to use only two wheels in tandem and was invented by the German Baron Karl von Drais. It is regarded as the modern bicycle's forerunner; Drais introduced it to the public in Mannheim in summer 1817 and in Paris in 1818.[18][19] Its rider sat astride a wooden frame supported by two in-line wheels and pushed the vehicle along with his or her feet while steering the front wheel.[18]
As is the case with any e-bike assembled from Chinese parts, Wing has its share of clones that can be found for sale on sites like IndieGoGo and Kickstarter. For example, the Danish company Strom Bikes has a model for city biking that also looks incredibly similar to Wing’s Freedom — and is apparently several hundred dollars cheaper too. This is also commonly found with electric scooters, with startups buying Chinese-made models and rebadging them for sale in the US.
As long as you can do without some of the perks that pricier models offer—like a detailed display unit, integrated lights, and a torque-sensor motor—the August Live! LS is a solid, stable, comfortable, and really freakin’ cute (have you see those polka-dot fenders?) e-bike. Its 8-speed twist shifter, chopper-style handlebar, Touch Down Geometry (for a more laid-back ride), and three levels of assist keep this bike within the realm of “cruiser.” But with a 250-watt Bafang rear-hub motor, a top pedal-assisted speed of 20 mph, and reliable disc brakes, the August is no joke. It’ll get you to the top of relatively steep climbs without forcing you out of the saddle, and it feels super stable on the way back down. It has a battery range of 20 miles, but that’s enough to take it where it’s happiest: tootling along at the beach, around town, and through the park.
Controllers for brushless motors: E-bikes require high initial torque and therefore models that use brushless motors typically have Hall sensor commutation for speed and angle measurement. An electronic controller provides assistance as a function of the sensor inputs, the vehicle speed and the required force. The controllers generally allow input by means of potentiometer or Hall Effect twist grip (or thumb-operated lever throttle), closed-loop speed control for precise speed regulation, protection logic for over-voltage, over-current and thermal protection. Bikes with a pedal assist function typically have a disc on the crank shaft featuring a ring of magnets coupled with a Hall sensor giving rise to a series of pulses, the frequency of which is proportional to pedaling speed. The controller uses pulse width modulation to regulate the power to the motor. Sometimes support is provided for regenerative braking but infrequent braking and the low mass of bicycles limits recovered energy. An implementation is described in an application note for a 200 W, 24 V Brushless DC (BLDC) motor.[43]

E-bikes are typically offered in 24V, 36V and 48V configurations. Higher voltage generally means higher top speed – but that may not always be the case. Since the efficiency of a motor and drive system can have an effect on power and speed, a 24V setup could have the same top speed as a 36V setup. Generally you can expect 15-18 mph on a 24v setup, 16-20 mph on a 36V setup and 24-28 mph on a 48V setup. Although it far exceeds Federal laws, some conversion kits can even be run at 72V for speeds of 35+ mph! However, this puts significant stress on bicycle components. Consider that even the fastest athletes only travel 17-18 mph on a conventional bicycle, so 20 mph feels very fast to most riders. Anything over this speed can be unsafe and exceeds law regulations.
I do not recommend hacking a bike into s-pedelec, i.e. make a 25km/h bike go at 45 or faster. If you have an accident you will be in trouble. Just get a legal version. In addition you will have good insurance. Of course, in countries like France or the UK that so far do not know S-Pedelecs, you will have to make a difficult moral choice.... At least, make sure that your rig is safe...
Controllers for brushless motors: E-bikes require high initial torque and therefore models that use brushless motors typically have Hall sensor commutation for speed and angle measurement. An electronic controller provides assistance as a function of the sensor inputs, the vehicle speed and the required force. The controllers generally allow input by means of potentiometer or Hall Effect twist grip (or thumb-operated lever throttle), closed-loop speed control for precise speed regulation, protection logic for over-voltage, over-current and thermal protection. Bikes with a pedal assist function typically have a disc on the crank shaft featuring a ring of magnets coupled with a Hall sensor giving rise to a series of pulses, the frequency of which is proportional to pedaling speed. The controller uses pulse width modulation to regulate the power to the motor. Sometimes support is provided for regenerative braking but infrequent braking and the low mass of bicycles limits recovered energy. An implementation is described in an application note for a 200 W, 24 V Brushless DC (BLDC) motor.[43]
As the managing editor of Ars Technica, one of my duties is to monitor the daily torrent of news tips and PR emails. The overwhelming majority of them is deleted after a glance, and the news tips and story ideas are passed along to the appropriate writer. Sometimes a product announcement will catch my eye, and I will follow up. Once in a blue moon, I'll say, "please send me one so that I may review it." And that's how I ended up riding an electric bike around the Chicago suburbs for two weeks.

At 42 pounds for a size medium frame (exceptionally light for an urban e-bike), this step-through model’s silent, mid-drive Bosch Active Line motor provides pedal assist up to 20 mph. And its 400Wh battery lasts a claimed 30 to a whopping 110 miles, depending on mode, speed, terrain, rider weight, cargo—all the usual stuff. With 26-inch wheels, 2-inch tires, round aluminum tubes, a swept-back handlebar, Shimano Sora 9-speed components, and an 11-32 cassette, the Parkway looks like an everyday, non-motorized city bike at first glance. But with an array of Bosch e-components—motor, battery, and Purion display—it has the zip to take you farther faster.


The Consumer Product Safety Commission(CPSC) stipulates that commercially manufactured low-speed electric bicycles, or tricycles, must have fully operable pedals, an electric motor not exceeding 750W of power and a top motor-powered speed not in excess of 20 miles per hour (32 km/h).[22] An electric bike remaining within these specifications will be regarded simply as a bicycle for purposes of safety standards. This supersedes any state law that is more stringent, but only regarding safety equipment required on electric bicycles and the standard of manufacture they must meet.[23]. The legislation enacting this amendment to the CPSC is also known as HR 727[24].
Torque sensors and power controls were developed in the late 1990s. For example, Takada Yutky of Japan filed a patent in 1997 for such a device. In 1992 Vector Services Limited offered and sold an electric bicycle dubbed Zike.[7] The bicycle included Nickel-cadmium batteries that were built into a frame member and included an 850 g permanent-magnet motor. Despite the Zike, in 1992 hardly any commercial electric bicycles were available. It wasn’t until 1998 when there were at least 49 different bikes. Production grew from 1993 to 2004 by an estimated 35%. By Contrast, according to Gardner, in 1995 regular bicycle production decreased from its peak 107 million units. Some of the less expensive electric bicycles used bulky lead acid batteries, whereas newer models generally used NiMH, NiCd and/or Li-ion batteries which offered lighter, denser capacity batteries. The end benefits usually varied from manufacturer; however, in general there was an increase in range and speed. By 2004 electric bicycles where manufactured by Currie Technologies, EV Global, Optibike, Giante Lite, Merida, ZAP.
Because the power is applied through the chain and sprocket, power is typically limited to around 250–500 watts to protect against fast wear on the drivetrain. An electric mid-drive combined with an internal gear hub at the back hub may require care due to the lack of a clutch mechanism to soften the shock to the gears at the moment of re-engagement. A continuously variable transmission or a fully automatic internal gear hub may reduce the shocks due to the viscosity of oils used for liquid coupling instead of the mechanical couplings of the conventional internal gear hubs.
A new electric cyclist will likely experience two conflicts of thought: 1). Will the general public accept my use of this power assist technology, or Will they ridicule and reject me as being lazy? 2). Will I stand out to law enforcement by the look of my bike or riding a bit faster than other cyclist on hills and roads? Grappling with these two thoughts will tempt most folks to try and remain unnoticed and ride more responsibly. After I became an advocate of e-transportation on two wheels, enjoying the benefits of power assist commuting, I eventually was a bit put off by this federal law, especially the 20mph limitation. Is 20 mph really practical and justified? Is it not true that many active young people on typical road bicycles are able to actively ride in the 20-25mph range? I discovered that ebikes, with larger tires and disk brakes, can comfortably and safety cruise in that range of speed. The standard 2001 Federal law of 20mph, eventually became a practical limitation for an ebike commuter of over 20 miles a day, and caused me to get a bike beyond the federal limits, making me more alert and sensitive when riding in the presence of the police.
We use cookies to optimise the content and display of our pages, to offer social media functionality and to analyse access to our website without creating a profile. In addition, when using the social media share functionality, information on the use of our website is transmitted to the respective providers. Use of the cookies necessary for this purpose can be deactivated in the Privacy Policy. Learn more.
Electric motorized bicycles can be power-on-demand, where the motor is activated by a handlebar mounted throttle, and/or a pedelec (from pedal electric), also known as electric assist, where the electric motor is regulated by pedaling. These have a sensor to detect the pedaling speed, the pedaling force, or both. An electronic controller provides assistance as a function of the sensor inputs, the vehicle speed and the required force. Most controllers also provide for manual adjustment.
Vehicles exceeding any of the criteria above must be registered and titled as a motorcycle. Other types of vehicles, such as electric scooters, "pocket rockets" and mini-choppers, may fit the definition of a moped or a motorcycle, but cannot be registered by the Department of State if they lack the equipment required by law to legally drive on public roads.[101]
Electric powered bicycles slower than 20 km/h without pedaling are legally recognized as a non-mechanically operated vehicle in China.[32] According to "TECHNOLOGY WATCH", this should help promote its widespread use.[33] Electric bicycles were banned in some areas of Beijing from August 2002 to January 2006 due to concerns over environmental, safety and city image issues. Beijing has re-allowed use of approved electric bicycles as of January 4, 2006.[34] Some cities in China still ban electric bikes.
So first off, it isn’t fair to compare the power of a Chinese rear hub motor watt for watt with a 250W Bosch or Brose or even a Shimano or Yamaha mid-drive motor. There just isn’t even close to the amount of torque or power on a per watt basis and that’s before we get to controllers. However, comparing the Rattan’s 350W motor to the Ancheer’s 250W motor seems more proportionally correct. Where as I could make it about a third of the way up my driveway hill from a cold start on Ancheer throttle, I made it about 2/3rds of the way with the Rattan, or another 100 feet. On a flat surface, again with throttle only, I hit 20 mph in about 10 seconds with the Rattan. It takes me another 5+ seconds to get there on the Ancheer. One note, the battery gauge does bounce around a bit depending on how much it is working. At full throttle you might lose a bar or 2 only to get it back once you coast.
The environmental effects involved in recharging the batteries can of course be reduced. The small size of the battery pack on an e-bike, relative to the larger pack used in an electric car, makes them very good candidates for charging via solar power or other renewable energy resources. Sanyo capitalized on this benefit when it set up "solar parking lots", in which e-bike riders can charge their vehicles while parked under photovoltaic panels.[66]

If you want an e-bike that positively sprays tech out you, try the Volt Axis on for size. It takes the GoCycle GS's combo of folding, lightweight frame and disk brakes and adds automatic gears, if you please. These react to your speed and pedalling effort. So you automatically gear down when you stop at traffic lights – although what self-respecting cyclist does that? – and then back up as you accelerate.
The Shift S1 isn’t going to blow anyone away with amazing performance, but it is peppy enough to have a lot of fun on. And if you mostly travel by rideshares like Uber or scootershares like Bird, you can probably pay for the S1 after just a few months of cutting out app-based transportation. It’s hard to ask for too much more from such an inexpensive e-bike.
If you have dynamo-powered bicycle lights, you already own an electric-powered bicycle! Consider: as you pump your legs up and down on the pedals, you make the wheels rotate. A small dynamo (generator) mounted on the rear wheel produces a tiny current of electricity that keeps your back safety lamp lit in the dark. Now suppose you could run this process backward. What if you removed the lamp and replaced it with a large battery. The battery would kick out a steady electric current, driving the dynamo in reverse so that it spun around like an electric motor. As the dynamo/motor turned, it would rotate the tire and make the bike go along without any help from your pedaling. Hey presto: an electric bike! It may sound a bit far-fetched, but this is more or less exactly how electric bikes work.
During nighttime operation, the bicycle must be equipped with a front headlamp, a rear-facing red reflector, and reflectors on the front and rear of pedals, and the bicycle or rider must have reflective surfaces on each side. Minn. Stat. §169.222, subd. 6. An electric-assisted bicycle can be equipped with a front-facing headlamp that emits a flashing white light, a rear-facing lamp that has a flashing red light, or both. The bicycle can carry studded tires designed for traction (such as in snowy or icy conditions).
A new electric cyclist will likely experience two conflicts of thought: 1). Will the general public accept my use of this power assist technology, or Will they ridicule and reject me as being lazy? 2). Will I stand out to law enforcement by the look of my bike or riding a bit faster than other cyclist on hills and roads? Grappling with these two thoughts will tempt most folks to try and remain unnoticed and ride more responsibly. After I became an advocate of e-transportation on two wheels, enjoying the benefits of power assist commuting, I eventually was a bit put off by this federal law, especially the 20mph limitation. Is 20 mph really practical and justified? Is it not true that many active young people on typical road bicycles are able to actively ride in the 20-25mph range? I discovered that ebikes, with larger tires and disk brakes, can comfortably and safety cruise in that range of speed. The standard 2001 Federal law of 20mph, eventually became a practical limitation for an ebike commuter of over 20 miles a day, and caused me to get a bike beyond the federal limits, making me more alert and sensitive when riding in the presence of the police.
Bicycles were introduced in the late 19th century in Europe, and by the early 21st century, more than 1 billion were in existence at a given time.[1][2][3] These numbers far exceed the number of cars, both in total and ranked by the number of individual models produced.[4][5][6] They are the principal means of transportation in many regions. They also provide a popular form of recreation, and have been adapted for use as children's toys, general fitness, military and police applications, courier services, bicycle racing and bicycle stunts.
A new European product safety standard EN 15194 will be published in 2009. EN 15194 contains several new requirements for ebikes to be sold in European Union and European Economic Area, including weight and voltage limitations. EN 15194 also defines a specific name for EU approved electrically-assisted cycles, EPAC - "Electrically Pedal Assisted Cycle".

Artwork: Hub motors aren't the only way to power electric bicycle wheels. If you've ever watched a mouse scampering around inside an exercise wheel, you might have wondered if you could drive a wheel electrically, in a similar way, with something that pushes against the inside of the rim. A company called GeoOrbital has been developing an ingenious mechanical equivalent that can be used to power conventional bikes—and here's a simplified illustration of how it works. It has a motorized drive roller (red) that presses against the inner rim, powered by a battery pack (orange) that sits snugly inside the wheel. Two guide rollers (blue) mounted on a tensioned framework (green) take the place of the conventional arrangement of spokes. According to GeoOrbital, you can fit one of its wheels to a normal bike in just 60 seconds.
OK, here we go. This electric scooter is also known as the DYU D1 over-seas, if you want to research it a little more, google that instead of Ancheer. This little thing is great. Once you put ten miles, or 16 kilometers on the odometer, the limiter turns off and this thing will hit in the ballpark of 20 mph! (I'm light so I've done 22 on a flat plane.) It has enough torque to go up hills, has functioning headlights and a brake-light, there's two apps you can download on the app store that will allow you to lock, change the speed settings, and see a digital speedometer of the bike. Very impressive in my opinion, even the handlebars fold over to make it easier to carry. The bike does not feel cheap, that outer tubular frame you're seeing is real metal. I'm 6' tall and I
Bicycle suspensions are used primarily on mountain bicycles, but are also common on hybrid bicycles, as they can help deal with problematic vibration from poor surfaces. Suspension is especially important on recumbent bicycles, since while an upright bicycle rider can stand on the pedals to achieve some of the benefits of suspension, a recumbent rider cannot.
The first functioning electric motor was displayed in the early 19th century, though the device constructed by British scientist Michael Faraday did little more than swirl a wire around a magnet when an electric charge was introduced. Still, the concept proved that electricity could do work. Functional electric motors would follow in many forms after that achievement in 1821. Soon scientists and tinkerers around the world, including visionaries such as Nikola Tesla, were experimenting with all manner of electric motors -- some worked with DC power, others with AC. By the end of the century, myriad electric motors had been produced, capable of exerting enough force with enough reliable control that they were practical for use in myriad applications.
(2) BICYCLE.--Every vehicle propelled solely by human power, and every motorized bicycle propelled by a combination of human power and an electric helper motor capable of propelling the vehicle at a speed of not more than 20 miles per hour on level ground upon which any person may ride, having two tandem wheels, and including any device generally recognized as a bicycle though equipped with two front or two rear wheels. The term does not include such a vehicle with a seat height of no more than 25 inches from the ground when the seat is adjusted to its highest position or a scooter or similar device. No person under the age of 16 may operate or ride upon a motorized bicycle.
Electric motor assisted bicycles have been banned in the State of New York and are not permitted for on-road use.[50][51] It appears the only known allowance of an electric bicycle is if it is an electric powered moped, at this time. There is a proposed bill to allow ebikes. As of May 2009, Bill A2393("Defines the term electric assisted bicycle") has been passed in the NY State Assembly[52] and its corresponding Bill S4014, sponsored by Senator Thomas Morahan, is before the NY State Senate.[53]
An electric bike (also called e-bike, power-assist bike, pedelec…) is a fairly conventional bike combined with a battery and motor that helps out when you are pedaling to make it easier to get uphill or completely takes over driving and allows you to cruise along. Top quality electric bikes, along with electric scooters, are revolutionizing the bicycle industry. Not only is riding an e-bike simple and easy, but a rider can significantly extend their range with minimal cost or effort.
The recommendation depends a lot on what you plan to use the bike for and how you plan to ride. That said, I would recommend at least a 750 (if not 1,000) watt motor, and, if you want reasonable range, 48 or 52v cells with a minimum rating of 19ah. For shorter rides, you can use a smaller battery. Multiply battery voltage by amp hour rating to get battery watt hours. Divide the watt hours by the motors power rating to get a general idea of how many hours of heavy use you might get. I’d also recommend a mid drive as opposed to a hub drive, or to find a hub drive wheel rated to take your and the bicycle's combined weight.
The battery is the pedelec’s power source. It supplies the motor with the electrical energy that is required to provide power assistance when cycling. So it is hardly surprising that there is frequent discussion and “talking shop” about the eBike’s battery in particular. What is the difference between batteries? How far can you go on a fully charged battery? What do you have to remember about storage? Thomas Raica, head of technical customer application, here provides information and advice. 
×