Many years of experience have clearly shown that it isn’t possible to make a universal and realistic estimate of an ebike’s range. The range of an eMTB depends on countless factors such as the support level, terrain, rider weight, environmental conditions, and cadence. Those who demand a lot of power from the motor consume a lot of electricity. If you want to travel far, you’ll have to save battery power. Read more about this topic in our article The truth about lab tests.
There is no suspension, so the fat bike is not ideal for downhill. Also, you will feel more shocks than usual while doing large drops or crossing big tree roots. The fat tires are helpful for keeping it accurate and quick on sand and snow but don’t run it on ice. The tires simply don’t have enough traction to stay steady on ice. Studded tires may solve the problem but the safer option to steer clear of icy tracks.
E-bikes mostly use motors and battery options from a few major suppliers: Bosch, Yamaha, Shimano, and Brose. A few other brands exist, but are less reliable or powerful. Some, like the Yamaha system, have more torque, and others, like Bosch’s Active Line, are nearly silent. But, generally, all four make good options. Look for motor output (in torque), which will give you an idea of total power. Just like car engines, more torque equals more power off the line and more boost to your pedaling. But watt hours (Wh) is perhaps a more important figure to use—it takes into account battery output and life to give a more accurate reflection of power (higher Wh equals bigger range).
What's The Best Electric Mountain Bike?
×